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1. Introduction, the data and the problem

We consider data characterizing N = 3300 yeast genes, each
characterized by d = 13 variables (traits). The data will be in
the following called ’the yeast genome’ data. A more detailed
description of the data may be found in [1, 2] or [6]. The
gathered variables have a quite clear interpretation and some
of them are fairly dependent. Attempt to simply omit some of
the variables is not working: the eventually omitted variables
(by use of the idep procedure) can not be explained in a sat-
isfactory manner by the retained variables. None the less, at
least some of the recorded variables are linearly interdepen-
dent. This may be stated, when analyzing the eigenvalues (of
their correlation matrix), exhibited in Figure 1.

0 2 4 6 8 10 12 14
0

1

2

3

4 subsequent eigenvalues

Fig. 1. Scree graph exhibiting eigenvalues of correlation ma-
trix calculated from N = 3300 genes. The decay of subse-
quent eigenvalues is shown. It seems that h = 6 is the right
number of latent variables. To the right of the 6th eigenvalue
– marked by a big filled circle – the decay exhibits a linear
pattern, which means that no more common factors can be
extracted

Our problem is: Could the observed variables be trans-
formed to a reduced set, containing h < d new, derived fea-
tures – without loosing not too much of total inertia (vari-
ance) of the entire set.

We apply for our task 3 methods: (1) traditional princi-
pal components, (2) probabilistic principal components, (3)
neural networks using multilayer perceptrons in the 13-6-13
layout. It seems, that the data may be explained by h = 6
derived latent variables. Thus, in further analysis we were
seeking for 6 new, derived features, called also latent vari-
ables. We think, we were quite successful: The traditional
PCA and the NN models explain, when using 6 factors, about
88% of total variablility of the data; however these methods
do not provide any generative model of the data. Probabilis-
tic principal components (Bishop, Tipping 1999) permit to
find h = 6 features, which are able to reproduce 78.53 % of
total variance of the data.

This result is interesting for several reasons: (1), it is con-
firmed, that principal components extract too much of total
variance of the data set (which means, that they account
some random effects as systematic effects). (2), it was inter-
esting to state, that neural networks using perceptrons behave
similarly as principal components and yield similarly overes-
timated approximation of hidden factors. This is opposed
to the recent paper by Nicole [5], where some doubts were
expressed, whether neural networks are suitable for a broad
application in biological systems. (3), the new features (latent
variables), derived from the observed variables, have a very
clear and interesting interpretation: The set of 12 variables
(representing 3 legs of the spider-plots [6]) has split into 3
double factors, each factor expressed by 2 latent variables.

In the following we explain briefly the methods and show
some results obtained when using the chosen methods.

2. Traditional PCA and Probabilistic PCA

Traditional PCA is well explained in the books by Jolliffe
(2002) or Krzanowski (2000). PCA is a purely mathemat-
ical technique, working with available data. No underlying
generative model of the data is considered. The predictions
of the target data are heuristic, based on the data sample
on which the predictions were evaluated. The method repro-
duces the entire data set (or, its covariance matrix), by rank
one matrices.

However, the principal components – based only on the
gathered data – do not provide any generative model of the
data, and no generalization can be done, neither no statistical
tests of significance.

A more general approach is by introducing a generative
model of the data, which is valid also in the context of neural
neutworks, considered as a tool for data analysis. Nabney
[4] writes: ”The goal of training a network is to model the
underlying generator of the data in order to make the best
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possible predictions when new input data is presented. The
most general information about the target vector t for inputs
x is given by the conditional density p(t|x)”.

Tipping and Bishop (see, e.g., [7]) have introduced proba-
bilistic principal components working with a generative data
model. The following basic model is assumed:

t = Wx + µ + ε (1)

Here t and x denote the observational and latent variables,
and ε – Gaussian noise σ2I.

The observed values t in d variables are supposed to be
generated by q < d hidden (latent) variables x distributed
normally with isotropic variance.

Under the assumed model [1] the observed vector t is dis-
tributed normally .

t ∼ Nd(µ,WWT + σ2I). (2)

The unknown parameters of the model [2] are: W and σ2.
They may be estimated either directly from the log-likelihood
or by the EM algorithm. Corresponding formulae may be
found in the paper by Tipping and Bishop [7].

3. Multi-layer perceptron

Neural networks have developed a special type of learning
(Hebbian learning) to capture the essential characteristics
(main directions) of the data. Quite a lot of research was
needed to find out, what really the Hebbian learning is yield-
ing.

Generally, artificial neural networks are considered as semi-
parametric or non-parametric models for data analysis, see
e.g., Gaudart et al. [3], and the references therein. Realiza-
tion of the method of principal components in the framework
of Hebbian learning was the subject of many investigations,
(see, e.g., the papers by Oja, Sanger et others). Recently, a
critical discussion of the approaches has been published by
Nicole [5].

Instead of the traditional Hebbian approach we have formu-
lated the task in terms of approximation of the data. Thus
the network has as target the data presented at the input.
The number of neurons in the hidden layer was put equal to
h, the number of the desired hidden factors (in our case this
was h = 6).

For our yeast genome data we have used a multi-layer per-
ceptron with 2 hidden layers. Its layout was: 13 – 6 – 13.
This means, there were 13 inputs, the first hidden layer with
h = 6 neurons has being condensing the inputs to 6 derived
variables. The derived 6 variables z1, . . . , z6 acted as input
to the second hidden layer who’s task was to reproduce from
the z’s the target, which was again the input vector.

The implementation in Netlab puts in the first layer as
obligatory the ’tanh’ activation function, which makes that
all z’s are contained in the interval (-1,1). The second hidden
layer has used the ’linear’ activation function.

The network needed about 3000 epochs (presentations of
the data matrix) to get stabilized parameters.

It was a big surprise to us obtaining, by such a standard
and simple tool, results very similar to those, obtained by
probabilistic PCA with rotation varimax.

Table 1. Matrix W expressing 6 latent variables for the yeast
genome data. The presented matrix was obtained from ro-

tated matrix U
√

(Λ− σ2I).

1.leg 1.leg 3.leg 2.leg 3.leg 2.leg %
ang1 -.08 .84 .07 -.18 -.21 .14 .81
ang2 .03 -.10 -.08 .83 .13 .17 .76
ang3 .00 -.06 -.85 .06 .11 .02 .74
x1 .72 -.37 -.09 .28 .15 -.28 .84
y1 .58 .67 .06 -.02 -.27 .02 .85
x2 .30 -.17 -.04 .69 .16 -.42 .80
y2 -.21 .08 -.17 .20 .14 .82 .81
x3 -.04 -.27 -.20 .24 .74 -.01 .71
y3 .05 -.04 -.79 .05 .27 .17 .73

lgth .65 -.01 -.08 -.06 -.14 -.50 .70
rho1 .85 .21 .04 .14 -.16 -.24 .88
rho2 .29 -.10 .09 .21 -.05 -.83 .84
rho3 .15 .12 .24 -.05 -.77 -.19 .73

Table 2. Results from training a perceptron with layout 13-
6-13 using the yeast genome data. Weights connecting the
hidden layer with neurons of the input layer are shown. All
weights were multiplied by 10. To be comparable with results
from Table 1, some columns should be permuted.

3.leg 2.leg 2.leg 1.leg 1.leg 3.leg
ang1 -.10 .03 -.22 -.76 -.26 -.43
ang2 .41 -.32 -.64 .21 -.34 .06
ang3 .96 .04 .37 -.40 -.15 .61
x1 .17 -.11 .06 .43 .51 -.20
y1 .06 .02 -.31 -.37 .31 -.54
x2 .27 -.55 -.24 .07 -.29 -.02
y2 .27 .40 -.44 .26 .05 -.20
x3 -.08 -.16 .32 .20 -.25 -.75
y3 .82 .13 .36 -.26 -.05 .19

lgth .15 -.13 .24 -.09 .39 .01
rho1 .12 -.05 -.18 -.00 .52 -.40
rho2 -.05 -.55 .20 -.23 -.25 .18
rho3 .12 -.03 -.39 -.11 .22 .92
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