HMM for Bioinformatics

Paweł Błażej

Department of Genomics, Faculty of Biotechnology, blazej@smorfland.uni.wroc.pl

```
marca 2019
```


Conventions and notations

(1) \mathcal{X}, \mathcal{Y}-alphabet;

Conventions and notations

(1) \mathcal{X}, \mathcal{Y}-alphabet;
(2) $|\mathcal{X}|=|\mathcal{Y}|=L$ - size of an alphabet;

Conventions and notations

(1) \mathcal{X}, \mathcal{Y}-alphabet;
(3) $|\mathcal{X}|=|\mathcal{Y}|=L$ - size of an alphabet;

- X, Y discrete random variables $(X: \Omega \rightarrow \mathcal{X})$;

Conventions and notations

(1) \mathcal{X}, \mathcal{Y}-alphabet;
(2) $|\mathcal{X}|=|\mathcal{Y}|=L$ - size of an alphabet;

- X, Y discrete random variables $(X: \Omega \rightarrow \mathcal{X})$;
- $P_{X}\left(x_{i}\right)$ probability.

Entropy

We can think of entropy as the level of uncertainty associated with a random variable.

Entropy - Definition

We define the entropy of the random variable $X \sim P$ as:

$$
H(P)=H(X)=-\sum_{i=1}^{L} P\left(x_{i}\right) \log _{2}\left(P\left(x_{i}\right)\right)
$$

where $H(0)=0\left(\right.$ convention $\left.0 \cdot \log _{2} 0=0\right)$.

Joint entropy

$$
H(X, Y)=-\sum_{x} \sum_{y} P(x, y) \log P(x, y)
$$

conditional entropy

$$
H(X \mid Y)=-\sum_{x} \sum_{y} P(x, y) \log P(x \mid y) .
$$

Properties of the entropy function

(c) $H(X) \geqslant 0$

Properties of the entropy function

(1) $H(X) \geqslant 0$
(2) $H(X) \leqslant \log (L)$ with equality iff X is uniformly distributed i.e. $P\left(x_{i}\right)=1 / L$ for every i;

Properties of the entropy function

(1) $H(X) \geqslant 0$
(2) $H(X) \leqslant \log (L)$ with equality iff X is uniformly distributed i.e. $P\left(x_{i}\right)=1 / L$ for every i;
(3) $H(X, Y) \leqslant H(X)+H(Y)$ with equality iff X and Y are independent;

Properties of the entropy function

(1) $H(X) \geqslant 0$
(2) $H(X) \leqslant \log (L)$ with equality iff X is uniformly distributed i.e. $P\left(x_{i}\right)=1 / L$ for every i;
(3) $H(X, Y) \leqslant H(X)+H(Y)$ with equality iff X and Y are independent;
(9) $H(X)$ is concave in X.

Chain Rule for entropy

$$
H(X, Y)=H(X)+H(Y \mid X)=H(Y)+H(X \mid Y) .
$$

$$
M(X, Y)=\sum_{x} \sum_{y} P(x, y) \log \frac{P(x, y)}{P(x) P(y)}
$$

$$
M(X, Y)=\sum_{x} \sum_{y} P(x, y) \log \frac{P(x, y)}{P(x) P(y)}
$$

Remark

$$
M(X, Y)=H(H)+H(Y)-H(X, Y) .
$$

Example - Binary entropy function

$$
\begin{aligned}
& \mathcal{X}=\left\{x_{1}, x_{2}\right\}, P\left(x_{1}\right)=p, P\left(x_{2}\right)=1-p \\
& H(p)=-p \log _{2} p-(1-p) \log _{2}(1-p)
\end{aligned}
$$

Example - Entropy of random DNA

(1) $\mathcal{X}=\{A, T, G, C\}$;

Example - Entropy of random DNA

(1) $\mathcal{X}=\{A, T, G, C\}$;
(2) $p(X=A)=p(X=T)=\ldots=p(X=C)=0.25$;

Example - Entropy of random DNA

(1) $\mathcal{X}=\{A, T, G, C\}$;
(2) $p(X=A)=p(X=T)=\ldots=p(X=C)=0.25$;
($H(X)=\left(\frac{1}{4} \log \frac{1}{4}+\ldots+\frac{1}{4} \log \frac{1}{4}\right)=2$;

Example - Entropy of random DNA

(1) $\mathcal{X}=\{A, T, G, C\}$;
(2) $p(X=A)=p(X=T)=\ldots=p(X=C)=0.25$;

- $H(X)=\left(\frac{1}{4} \log \frac{1}{4}+\ldots+\frac{1}{4} \log \frac{1}{4}\right)=2$;
- We can think in this case of the entropy as a number of yes/no questions needed to identify an autcome.

Entropy - Interpretation

Definition

A code is called uniquely decodable if any string composed of finite number of symbols from \mathcal{X} gets a unique codestring.

Entropy - Interpretation

Definition

A code is called uniquely decodable if any string composed of finite number of symbols from \mathcal{X} gets a unique codestring.

Kraft inequality

A necessary and sufficient condition on the lengths of codestring l_{i} in a uniquely decodable code is:

$$
\sum_{i=1}^{L} 2^{-l_{i}} \leqslant 1
$$

Entropy - Interpretation

The expected length of the optimal uniquely decodable code belongs to the interval $[H(X), H(X)+1)$

relative entropy - Kullback distance

$$
D\left(P_{1} \mid P_{2}\right)=\sum_{i=1}^{L} P_{1}\left(x_{i}\right) \log \frac{P_{1}\left(x_{i}\right)}{P_{2}\left(x_{i}\right)}
$$

relative entropy - Kullback distance

$$
D\left(P_{1} \mid P_{2}\right)=\sum_{i=1}^{L} P_{1}\left(x_{i}\right) \log \frac{P_{1}\left(x_{i}\right)}{P_{2}\left(x_{i}\right)}
$$

Convention

(1) $0 \cdot \log \frac{0}{P_{2}\left(x_{i}\right)}=0$;
(c) $P_{2}\left(x_{i}\right) \log \frac{P_{1}\left(x_{i}\right)}{0}=\infty$

Information content

If X is a random variable with the probability P_{1} on an alphabet of L symbols, and P_{2} is the uniform distribution on this alphabet then

$$
D\left(P_{1} \mid P_{2}\right)=\log (L)-H(X)
$$

Properties of relative entropy

Further reading

(1) T. Inglot, „Teoria informacji a statystyka matematyczne" wykład wygłoszony na XXXVIII Konferencji Statystyka Matematyczna Wisła 2012;
(2) L. Dębowski, "Information Theory and Statistics", Institute of Computer Science Polish Academy of Science, Warsaw, 2013.

