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ABSTRACT Statistical methodology for 
the identification and characterization of pro- 
tein binding sites in a set of unaligned DNA 
fragments is presented. Each sequence must 
contain at least one common site. No alignment 
of the sites is required. Instead, the uncertainty 
in the location of the sites is handled by em- 
ploying the missing information principle to 
develop an “expectation maximization” (EM) 
algorithm. This approach allows for the simul- 
taneous identification of the sites and charac- 
terization of the binding motifs. The reliability 
of the algorithm increases with the number of 
fragments, but the computations increase only 
linearly. The method is illustrated with an ex- 
ample, using known cyclic adenosine mono- 
phosphate receptor protein (CRP) binding 
sites. The final motif is utilized in a search for 
undiscovered CRP binding sites. 
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INTRODUCTION 
The identification of common sites in multiple se- 

quences is frequently encountered in the analysis of 
biopolymer sequence data. Examples are protein- 
binding sites in DNA sequences, T-cell binding sites, 
and antigenic epitopes of protein sequences. Al- 
though the methods we present are applicable to a 
broad class of such problems, we focus here on DNA 
protein-binding sites. Such sites have traditionally 
been identified by isolating cis-acting mutations 
that affect expression and determination of corre- 
sponding changes in the DNA of the mutant 
phenotypes.’ More recent techniques include affn- 
ity purification of the DNA-binding regions and 
“footprinting” techniques.” These methods are time- 
consuming and provide partial information about 
the binding sites; the final determination of the sites 
usually requires the comparison of many examples. 
One aim of the methods proposed here is to reduce 
the required experimental work to the identification 
of restriction fragments that contain binding sites. 

The diversity that arises in such fragments is il- 
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lustrated by Escherichia coli promoter sites. Consen- 
sus sequences at  -35 and -10 are, respectively, 
“TTGACA” and “TATAAT,” but none of the posi- 
tions are absolutely conserved. The most conserved 
bases a t  the -10 position are “TAxxxT,” but only 
about 65% of all promoters match even this crite- 
rion. Deuschle et al.3 have shown that promoters of 
identical strength exhibit different structures 
through optimization of different elements of the 
promoter sequence. This leads to  a diversity of func- 
tioning sequences, all of which depart substantially 
from the consensus. Consensus descriptions are 
therefore likely to  have important limitations. 
Methods that focus on matching identical substrings 
of “words” share in some of these  limitation^.^^^ The 
identification of sites common to several sequences 
is consequently linked with the model employed to 
describe the diversity. 

A better description of sites is a stochastic model 
of residue frequencies. This model assigns probabil- 
ities to each of the four bases at  each position in the 
site. An information measure based on a matrix of 
these probabilities has been shown to provide a use- 
ful indication of how constrained the choice of bases 
is at  each site.6s7 The measure is highly correlated 
with binding affinities when binding sites are 
known.8 

Recently, Stormo and Hartzell,’ proposed an algo- 
rithm to identify protein binding sites in unaligned 
DNA fragments that uses this measure. They focus 
exclusively on a mononucleotide/monoresidue mod- 
el: Each position in the site has residue probabilities 
independent of any other position. However, the 
structural features of the proteins involved in site 
selection transcend the features encompassed in a 
monoresidue model. The most important limitation 
of monoresidue models stems from their assumption 
of no correlative effects across multiple residues. For 
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example, in dimeric prokaryotic DNA binding pro- 
teins, residues from the helix-coil-helix motifs make 
contact with bases in two major groove openings. 
The symmetry of the dimer leads to  a strong corre- 
lation in the base frequencies a t  equivalent yet non- 
adjacent positions in the major grooves, resulting in 
a palindromic pattern. 

The method presented here is designed to capture 
and characterize such structural features by em- 
ploying a set of models derived from the proposed 
motifs. These models and the associated statistical 
test procedures allow for the characterization of the 
binding motif and improved identification of the 
binding sites. Additionally, a mechanism for deter- 
mining the length of the site is presented. To 
consider these various alternative models, we 
employ a generalization of the information measure 
presented by Storma and Hartzell, the log likeli- 
hood. 

The log likelihood is a t  the heart of a very general 
procedure for data analysis, maximum likelihood 
estimation,’” and the method presented here. Un- 
aligned sequences contain no explicit information on 
the location of the sites of interest. In multiple se- 
quence comparison problems, this leads to a high 
degree of positional uncertainty. We employ the 
“missing information principle” to develop an expec- 
tation maximization (EM) algorithm that overcomes 
this informational deficit. The EM algorithm is de- 
scribed by Dempster, Laird, and Rubin‘’ and in a 
recent text by Little and Rubin.” For our purposes, 
it suffices that it has been shown to be applicable to 
a broad range of problems, including many problems 
not normally considered to arise from missing or in- 
complete data. The applications that are the closest 
to ours are latent class models13 and estimation in 
finite mixture models. l4 We have found that the for- 
mulation of this problem as a special class of finite 
mixture models leads to  a number of useful statisti- 
cal and informational insights, to  be presented else- 
where. The algorithm generates estimates of the 
probabilities that the sites are located in each pos- 
sible position in each sequence and thereby predicts 
the most likely binding sites simultaneously with 
maximum likelihood estimates of the model param- 
eters. 

We begin with the mononucleotide model and 
then show how to  incorporate specific motif charac- 
teristics through the use of models appropriate to  
each. The procedure also provides a means for se- 
lecting the most data-consistent model from the set 
of models specified. We apply the method using DNA 
fragments that are known to contain sites that bind 
t o  cyclic adenosine monophosphate receptor protein 
(CRP)). Using the final selected model, we scan a 
large database for undiscovered binding sites. This 
procedure locates four new sites and gives a frame of 
reference for judging the importance of secondary 
sites. 

MATERIALS AND METHODS 
The Problem 

To facilitate the description of the algorithm, we 
begin by posing the problem using CRP binding 
sites as an example. This protein and its binding 
sites have been extensively studied, and much is 
known about its recognition  site^.'^,^^ CRP binds to  
several sites on the E .  coli genome, where it can 
function either to  enhance or to  repress gene expres- 
sion. Figure 1 shows several of these sites, each 22 
bases long, from 18 sequences, and a tabular histo- 
gram of the occurrence of each base at  each position. 

Figure 2 shows the data to be analyzed. In these 
data, the sequences of 105 bases have been selected 
to  position the sites randomly within the sequen- 
c e ~ . ~  The second row for each sequence marks the 
location of the start of each site with a 1. Solely t o  
enhance the reader’s ability to visualize the sites 
within the sequences, we have capitalized the bases 
within each site. 

To state the problem succinctly, we seek to repro- 
duce Figure 1 and second rows of Figure 2, using 
only the sequence information, i.e., the top rows, of 
Figure 2. Suppose it is known that a protein binds to  
at  least one site of length J, 22 positions in this 
example, in each of these fragments, but that the 
position of the binding site(s) in each fragment is 
unknown. If the fragments are L, here 105, bases 
long, then there are (L - J), here 83, positions out- 
side the site. Since the location of the site in any of 
the sequence is unknown, the site could be in any of 
(L - J + l), 84, positions in each sequence. There 
are consequently 8418 combinations of segments of 
22 bases, from which the correct 18 must be chosen. 
If we knew where the sites where, i.e., if complete 
data were available, then the base probabilities, pbj, 
j = 1 , 2 . .  . J; b = A,C,G,Tfor the positions within 
the site, and the base composition for all positions 
outside the site, can be estimated from the col- 
lection of marked subsequences (see Fig. 1). Our 
problem is that the site location information is miss- 
ing. We are challenged to find the site locations and 
the base probabilities, pbj, using only the sequence 
data S, . . . S,. 

The Algorithm 
The EM algorithm simplifies the analysis of prob- 

lems with missing information by iteratively solv- 
ing a sequence of problems in which expected infor- 
mation is substituted for missing information. This 
expected information is used at  each step to solve 
the more straightforward problem associated with 
having complete information, by maximum likeli- 
hood. Thus the first step is to find the form of the 
solution as if one had complete information. 

In our case, we are missing positional information. 
Thus we begin by formulating the problem as if we 
had the missing positional information. Given the 
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F o o t p r i n t  S i t e s  

C o l  E l  s i t e  2 T T T T T T G A T  C G T T T T C A C A A A A 
Col El s i t e  1 T T T T G T G G C A T  C r; G G C G A G A A T 
ara  s i t e  2 T T A T T T G C A C G G C G T C A C A C T T  
a r a  s i t e  1 A A A A G T G T C T A T A A T C A C G G C A  
B g l  R m u t l  A A C T G T G A G C A T G G T C A T A T T T  
c r p  G T A T G C A A A G G A C G T C A C A T T A  
c y a  A G G T G T T A A A T T G A T C A C G T T T  
d e o  P2 s i t e  2 T T A T T T G A A C C A G A T C G C A T T A 
d e o  P2 s i t e  2 A A T T G T G A T G T G T A T  C G A A G T G 
gal T A A T T T A T T C C A T G T C A C A C T T  
i l v  B A A A C G T G A T C A A C C C C T C A A T T  
l a c  s i t e  2 T A A T G T G A G T T A G C T C A C T C A T  
l a c  s i t e  1 G A A T T G T G A G C G G A T A A C A A T T  
ma1 E T T C T G T A A C A G A G A T C A C A C A A  
ma1 I< T T C T G T G A A C T A A A C C G A G G T C  
ma1 T A A T T G T G A C A C A G T G C A A A T T C  
omp A A T G C C T G A C G C A G T T C A C A C T T  
t n a  A G A T T G T G A T T C G A T T C A C A T T T  
iixii AB T G T T G T G A T G T G G T T A A C C C A A  
Pbr  P4 C G G T G T G A A A T A C C G C A C A G A T  
c a t  A A A A T G A G A C G T T G A T C G G C A C  

A )  Base f r e q u e n c i e s  i n  f o o t p r i n t  s i t e s  

A 8 1 0  9 2 0 0 4 1 5  8 5 3 1 0  3 7 1 2 1 5  4 1 4  4 7 6 
c 1 0 3  2 1 1  0 1 5 8  5 1 4  3 2 1 8  1 1 5  1 7  1 3  
c 3 3 3 0 1 4  2 1 5  3 2 5 6 5 1 0  6 3 0 4 1 5  4 0 1 
T 9 8 6 1 7  6 1 8  2 2 6 3 7 5 4 5 1 5  1 1  1 1  6 1 3 1 1  

R) 
M o n o n u c l e o t i d e  model  r e s u l t s  

A 4 4 5 0 0 0 4 1 5  7 
C 1 0 2 2 3 2 0 2 4  
G 2 4 5 111  0 1 2  0 2 
T 10 9 5 1 4  3 1 5  1 0  4 

Fig. 1. CRP experimentally determined sites from the 18 loci 
listed in Figure 2. Although not all these sites were identified by 
footprinting experiments, to facilitate the presentation we refer to 

locations of the sites in each sequence, and a model, 
say, the monoresidue model, the probabilities a t  each 
position in the site can be estimated. The following 
generalization of Stormo's and Hartzell's informa- 
tion measure, the log likelihood, forms the basis for 
the required maximum likelihood estimates: 

J T  

j = l  b = A  
10gL = N C  C fbjloge(pbj) + 

T 

b=A 
N(L - J) 2 fb,OlOge(Pb,O), (1) 

where Pb,O are the unknown population base proba- 
bilities, parameters, for all positions outside of the 
site; fb,o are observed base frequencies; nb,O are the 
base counts outside the site; and PbJ are the param- 
eters and fbJ, are the base frequencies and nbj the 
base counts for each position in the site. Note that 
Equation 1 differs from previous information mea- 
sures used for this problem in two ways: l) it is a 
generalization, since arbitary models for base fre- 

5 1 8  1 4  0 1 1 4  2 1 3  5 9 7 
5 3 0 4 3 1 1 4  0 1 4  1 5  0 1 
4 6 3 9 4 4 0 3 0 1 1 0 0  
3 7 6 3 6 1 2  2 0 1 2  6 8 9 

them in the text as footprint sites. A is compiled from these ex- 
perimentally determined sites. B is compiled from the results of 
the mononucleotide model. 

quencies may be employed, rather than only position- 
specific base frequency models; 2) it encompases all 
the data in each sequence, not just the data in the 
site. Thus the second term is added to the first to  
describe bases not in the site. As a result, if one ofthe 
features that charterize the site is a tendency for a 
different overall base composition than the rest of the 
sequence, this effect will be exploited by improve- 
ments in the second term of the log likelihood. In a 
sample of N segments of length L, each position 
within the site will yield N observed bases, but data 
from all (L - J) nonsite positions yeild N(L - J) non- 
site observations. To obtain the maximum likelihood 
estimates, we find the values for the parameter es- 
timates fib> that maximize the log likelihood. These 
are easily obtained in this case, since the values that 
maximize log L are the sample frequencies, i.e. 
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Fig. 2. Sequences from the 18 loci that contain CRP binding 
sites and site location vectors. The first 17 sequence are taken 
directly from Genbank rev 55. In new revisions of Genbank eco 

h a l e  and eco Imalk are combined in eco malba. (tdc) is not in 
Genbank; it was taken directly from Stormo and Har t~e l l .~  Se- 
quences have been chosen to place the sites at random positions. 
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These estimate are not available when information 
on the positions of the sites is missing; the nbj are 
unknown. 

EM algorithms are named for their two iterative 
steps, the expectation (E) step and the maximization 
(M) step, which are alternately repeated until a con- 
vergence criterion is satisfied. In the following de- 
scription, we assume that we have completed some 
number of these iterative cycles, say iq - 1). 

E Step 
The site, which is J = 22 bases long, can start at  

any of L - J + 1 = 84 positions. We are missing the 
information that specifies the location of the start of 
each site. However, at  the beginning of the E step of 
the qth iteration, the current values of the popula- 
tion frequency estimates from the previous iteration 
of the M step are available. These values taken to- 
gether specify the current estimate of the model pa- 
rameters. With these values, we calculate the prob- 
ability of observing the data in each sequence 
assuming that the site starts in each of the possible 
L - J + 1 (84) positions. These probabilities can 
now be used to calculate the probability that the site 
starts in each of the possible positions by using 
Bayes formula. Appendix A gives the formulas for 
this calculation. 

Now, using the probabilities that the site starts in 
each of the possible positions as weights, add across 
the positions to  find the expected number of the 
bases at each position in the site. For example, as- 
sume that there is an A in the first position of the 
window that starts at  position 50 of, say, the third 
sequence. If the probability that the site starts at  
position 50 in the third sequence is 0.01: add 0.01 As 
to the accumulating expected number of A's in the 
first position of the site. These expected values may 
be formally represented as follows: 

= E(nbj( p'q - *) ,S);  
j = 0 , .  . . , J; b = A, C, G, T, (3) 

where S indicates the N available sequences. 

M Step 
Recall from Equation 2 that the maximum likeli- 

hood estimates for the population frequencies are 
just the sample frequencies when complete data are 
available. In the M step, substitute the expected 
number of bases for each position in the site from the 
E step for the unavailable directly observed number 
of bases into Equation 2: 

j = 1 , .  . . , J 

b = A, C, G, T(4) 

b = A, C, G, T. 

The algorithm converges when the parameter esti- 
mates stop changing, i.e., when 

(5) 
At convergence the algorithm yields estimates of the 
population base probabilities, bbJ, and a set of pos- 
terior probabilities that indicate the probability that 
the site is a t  each of the possible positions in each 
sequence. 

Motif Characterization 
Although we have employed the mononucleotide 

model to illustrate the formulation of the algorithm, 
the algorithm encompasses a much broader set of 
motifs. To incorporate alternate motifs in our anal- 
ysis, we consider alternate models for the population 
base frequencies for the positions within the site. 
For example, when a palindromic sequence is appro- 
priate, expected numbers in the palindrome includ- 
ing bases, and their reverse complements are em- 
ployed in Equations 3 and 4. Variable-length gaps 
within the site can be added to the algorithm 
through the use of a second missing variable, the 
gap length. This will result in the modification of 
the E step by including as candidate sites all loca- 
tions with all allowed gaps lengths. 

When the binding motif is known a priori, then we 
need employ only the single model that corresponds 
to this motif. However, when the binding motif is 
not fully specified, the approach proposed here pro- 
vides a means for choosing between the candidate 
motifs: We progressively impose more restrictions to 
yield a set of progressively more specific models. 
This sequential process is terminated when added 
restrictions reduce our ability to predict the data 
more than would be expected from chance alone. The 
likelihood ratio statistic is used to assess the limits 
of chance variation. 

Application to CRP: The Data 
We tested the algorithm by using CRP binding 

sites as an example. Beginning the analysis with 
only the assumption that CRP is a prokaryotic 
dimeric DNA binding protein yields a set of specific 
hypotheses about the binding motif. A palindromic 
binding motif at  the positions in adjacent major 
groove openings implies a probability model speci- 
fying reverse complementarity of the bases sepa- 
rated by about six positions for the intervening mi- 
nor groove. This model is implemented by requiring 
that the bases at  positions 4-8 be the same as the 
probability of corresponding complementary bases 
in positions 19-15 (denoted in Table I1 as palindro- 
mic motifs). For example, the probability of a T a t  
position 6 should match the probability of an A at 
position 17. 

The bases in the minor groove that intervenes be- 
tween the two major groove openings in the site are 
less accessible to the CRP protein. It has been sug- 
gested that the interaction is such that, at most, 
double-bonded base pairs (ATITA) can be distin- 

$q) = * ( q -  1) = A(* )  

P P .  
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TABLE I. Starting Positions of the Sites* 

Two most likelv sites 
Mononu- Final 

Footprint cleotide model (D) 
Sequence sites First Second First Second 
Cole 1 17, 61 61 45 61 17 
eco arabop 17, 55 55 76 55 17 
eco bglrl 76 76 40 76 42 
eco crp 63 63 73 63 45 
eco cya 50 50 15 50 15 
eco deop 7, 60 7 39 7 60 
eco gale 42 24 76 42 (.92) 24 (.07) 
eco ilvbpr 39 39 20 39 (.91) 20 (.09) 
eco lac 9, 80 9 73 9 73 
eco male 14 14 12 14 12 
eco malk 29, 61 61 29 61 29 
eco malt 41 41 11 41 51 
eco ompa 48 48 12 48 82 
eco tnaa 71 71 34 71 7 
eco uxul 17 17 26 17 25 
pbr-p4 53 53 84 53 51 
trn9cat 1, 84 5 66 84 t.94) 5 (.05) 
(tdc) 78 78 76 78 (.93) 76 (.07) 

*Footprint sites are those indicated in Stormo and Hartzell," 
except for site 61 in eco malk, which has been recently identi- 
fied as a stronger footprint site than eco malk at  position 29.'l 
The two most likely sites are the two sites in each sequence 
with the highest posterior probability of being a binding site. 
Values within the parentheses are the posterior probabilities of 
the positions being a t  these sites. For all other sites the prob- 
ability for the most likely site > 0.995 and for the second < 
0.005. 

guished from triple-bonded base pairs (CGIGC). l7 A 
model that considers two, (ATITA) vs. (CGIGC), 
rather than four categories at each position may be 
appropriate in this case (denoted in Table I1 as AT 
position-specific motifs). Alternatively, the lower 
melting point of ATITA, pairs, which impart flexi- 
bility, may allow better accessibility for the protein. 
If this is the relevant sequence feature in some mi- 
nor groove positions, then only the overall concen- 
tration of (ATITA) pairs would affect binding in 
these positions (denoted in Table I1 AT concentra- 
tion motifs). 

Additionally, since dimeric DNA binding proteins 
make base-specific contacts only in two adjacent ma- 
jor grooves, the DNA recognition region may span 
no more than 16 positions. Classic phosphate ethy- 
lation experiments indicate a binding site of 22 
bases for CRP. However, using new gel electro- 
phoretic analysis methods, Liu-Johnson et al.'" 
present evidence of a thermodynamically defined 
binding domain of 26-30 bases for the CRP site in 
the eco lac promoter. To address site length issues, 
motifs that includeiexclude bases from the ends of 
the site are called for. Since these additional resi- 
dues are from minor grooves, various combinations 
of mononucleotide, AT position-specific, and AT con- 
centration models are appropriate candidates. 

RESULTS 

The mononucleotide model is a natural starting 
point. Figure 1B gives the final estimates of the pop- 
ulation percentage frequencies for each of the four 
bases in all 22 positions in the site for the mononu- 
cleotide model. Note that there is good agreement 
between the frequency of the bases from the foot- 
print results and those estimated by the algorithm. 
Table I identifies the two top choices for the sites 
selected by the algorithm, i.e., the two sites for each 
sequence with the highest posterior probabilities. 
The algorithm's first choice correctly identifies a site 
reported by footprinting for 16 of the 18 sequences. 
In the top two choices, we identify 17 of the 24 foot- 
printing sites. The results of the examination of al- 
ternative motifs are given in Table 11. In comparing 
motif B with motif A, there is no evidence in the 
data to reject the palindromic motif (P = 0.37). Fur- 
thermore, in comparing motif C with motif A, only 
the double-bonded bases pairs are justified by the 
data in the minor grooves (P = 0.73). As is indicated 
by the comparisons of motif D and motif C, we can 
further relax the requirements for the outer minor 
grooves. Motif D employs only overall AT concentra- 
tion in these outer minor groove positions. However, 
as indicated by the comparison of motif E and motif 
D, in the central minor groove, we reject the model 
that considers only overall (ATITA) vs. (CGIGC) con- 
centration. We find rather that  double bond (ATITA) 
vs. triple bond (CGIGC) specificity a t  each of the six 
central minor groove positions is justified by the 
data. 

To address the question of site size, we examined 
the effect of describing residues at the end of the site 
as bases whose frequency was described by the fre- 
quency of bases in nonsite positions. In comparing 
motif F with motif D, we can reject the hypothesis 
that  positions (1,22,2,21,3,20) are no different from 
nonsite positions. The base composition a t  positions 
3 and 20 is not much different from that of the non- 
site positions. Thus the primary reason that these 
outside minor groove sites cannot be excluded is that 
the characteristic overabundance of double-bonded 
bases in outer minor groove positions (1,22,2,21) is 
conserved over the sites. Thus these positions appar- 
ently play a role in the DNA-protein complex. On 
the other hand, in comparing motif G and motif H to 
model D, we see that there is no significant evidence 
in these data for a site size as large as 26 or 30 bases. 
In summary, the these sequence data are consistent 
with a binding domain of 22 bases composed of three 
distinct regions: the outer minor grooves, the major 
grooves, and the central minor groove. These re- 
gions follow three different binding patterns, as 
shown in Table 111. 

As is indicated in Table 11, the agreement between 
the known footprint sites and the sites selected by 
the algorithm improves as we converge on the model 
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TABLE 11. Alternative Models/Motifs* 

- 2,464.0 

-2,426.4 

-2,412.6 

- 2,405.1 

Number of 
footprints P value 

(comparison (degrees 
LRT 

Modelimotif Log 1 model) of freedom) First First and Second 
A. Mononucleotide -2,391.7 16 17 
B. Palindromic -2,410.1 36.9 0.37 17 20 

C. Palindromic major -2,410.9 38.2 0.73 17 20 
AT-specific minor (vs. A) (41) 

D. Palindromic major -2,413.5 5.54 0.13 18 22 

AT concentration ends 
E. t t 

Palindromic major 100.9 <0.001 11 15 
AT concentration minor (vs. D) (6) 

F. Sixteen positions 25.8 <0.001 17 20 
Palindromic major (vs. D) (7) 

G. Twenty-six positions 1.8 0.18 16 20 
Palindromic major (vs. D) (1) 

all positions (vs. A) (33) 

AT-specific central (vs. C) (3) 

AT-specific central 

AT-specific central 
AT concentration ends 

Palindromic major (vs. D) (13) 
AT-specific central 
AT concentration end minor 
Mononucleotide end major 

H. Thirty positions 16.9 0.20 16 21 

*The values in the column labeled Log 1 are the log likelihood values from Equation 1. The values in the column labeled LRT are the 
values of the likelihood ratio test, which is equal to -2 times the differences between the log liklihoods of the two models indicated 
in parentheses. Likelihood ratio statistics are calculated using the method presented by Aitkin and Rubin14 to overcome potential 
problems with the assumption of asymptotic normality of the estimators. For all models, the optimal solutions were obtained by 
adding 1 to each cell in the M step to attain an initial optimal. Then, the 1 was removed to allow convergence to the final optimal 
solutions presented here. The results considered after the initial optimal solutions are not remarkably different from those presented 
here. It is well known that mixture problems have multiple optimal solutions. Thus it is strongly recommended that multiple starting 
values be empl~yed. '~ Since this is a mixture problem, multiple optimals can and sometimes do occur for the method presented here 
as well. In this application, when we started from an  initial solution with a probability of 0.25 for all bases in all positions, i.e., pbJ 
= 0.25, b = A, C, G, T; j = 0 , l  . . . J ,  we always converged to solutions that identified the indicated experimentally determined sites 
shown in Table I or to  solutions that were a t  most one base off. Spacing of minor and major grooves is as proposed by Liu-Johnson 
et al.,Is six positions for the central minor groove and five each for the surrounding major and minor grooves. 
tFor model E, these identified sites disagree with the footprint sites by plus or minus one position. 

most consistent with the data. For the final model, 
motif D in Table 11, the algorithm's first choice 
agrees with the footprint data for all 18 sequences; 
21 of the 23 footprint sites are included in the top 
two choices. The two sites that we did not identify 
are trn9cat at position 1 and eco lac a t  position 80. 
The trn9cat site at position 1 shows much better 
agreement with the other footprint sites, with seven 
bases between the major grooves  position^,^ and eco 
lac a t  position 80 shows better agreement when five 
bases are used.15 Thus the algorithm identified all 
footprint sites spaced with six bases between the 
major groove positions. There are 1,512 (84 x 18) 
segments, and 8418 combinations of candidates seg- 
ments of length 22 in the sequences. Since all but 23 
of these segments are not footprint sites, these re- 
sults illustrate the ability of the algorithm to dis- 
criminate sites from nonsites. 

In an effort to identify new candidate binding sites 
in these loci, we gathered the entire sequences for 
each of the 17 loci that  were available in Genbank. 
This yielded some 31,614 segments of 22 bases, for 

which the probability that each was drawn from the 
population of sites, as described by model D, was 
calculated. This procedure is not an additional val- 
idation step; the model was tuned to the best sites in 
the segments of 105 bases in Figure 2. All but a few 
segments had very small probabilities. Figure 3 dis- 
plays the cumulative probability distribution of the 
50 sites with the highest probabilities. Not surpris- 
ingly, the best sites include the primary sites iden- 
tified by the algorithm. The top 19 sites, those above 
the indicated cut-off, include 16 of the 17 primary 
known footprint sites. The rapid increase in the pre- 
dicted probabilities in the vicinity of the cut-off in- 
dicates that this small fraction of observations, ap- 
proximately 0.06% (100 X 20/31,614), are outliers 
and are not drawn from the same population as the 
bulk of the observations. The only sequence with a 
footprint site not included in this group of outliers is 
trn9cat. As has been pointed out, neither of the foot- 
print sites in trn9cat shows good homology with the 
remaining sites.15 

The other three outlying sites include two seg- 
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TABLE 111. Description of the Final Model (D)* 

Base 
Groove Posi t ion A or  T C o r  G 
Outer  m i n o r  groove 1 0.876 0.124 

2 
21 
22 

Majo r  groove 4 & (19) 
5 & (18) 
6 & (17) 
7 & (16) 
8 & (15) 

10 
11 
12 
13 

Cent ra l  m i n o r  groove 9 

0.876 
0.876 
0.876 

0.614 
0.397 
0.441 
0.781 
0.219 

0.124 
0.124 
0.124 

0.386 
0.603 
0.559 
0.219 
0.781 

Base 

A T C G 

0.030 0.806 0.109 0.056 
0.028 0.139 0.057 0.777 
0.053 0.833 0.113 0.000 
0.115 0.056 0.000 0.829 
0.830 0.028 0.114 0.029 

14 0.509 0.491 
*Estimated population base frequencies from model D. In the major groove for the positions given in parenthesis, the probabilities 
are for the complementary base. The base probabilities in the nonsite positions provide a rudimentary description of the context in 
which the sites occur. The estimates for these are A (.303), T (.300), C (.187), and G (.211). Positions 3 and 20 are on the margin of 
the major groove and the end minor grooves. They were equally well described by several models. We selected the simplest mono- 
nucleotide model for these positions. 

Distribution of Predicted CRP Sites 

IC 

0.8 - - PCoMALEA 295 

- PBR322 4217. 2025 

-CUTOFF AT ECOUXUI 217 
0.6 f 

- 

0.4 - 
- 
- 
- 

0.2 - 
- 

0 0 . 2  0 . 4  0 . 6  0.8 1 

Predicted Probabilities 

Fig. 3. The cumulative distribution function for the 50 seg- 
ments with the highest probabilities of being drawn from the pop- 
ulation of binding sites as described in model D. The cut-off point 

is indicated for the last consecutive primary experimentally deter- 
mined site. The prb322 sites and the eco malba site at the alter- 
native sites described in the text. 
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ments from pbr322. The segment at  position 4217 is 
in the P3 promoter region of the p-lactamase gene, 
42 positions upstream from the transcriptional start 
site.lg The segment a t  position 2025 is 68 bases up- 
stream from the replication factor Y effector site. 
Factor Y is one of the proteins in the multienzyme 
unit known as the primosome. The primosome gains 
entry into the DNA at a specific site, and the spec- 
ificity of this interaction resides in factor Y." These 
two segments are in regulatory regions of the plas- 
mid and thus are in plausible positions for a CPR 
binding site. 

The loci eco malk and eco male as listed in Figure 
2 constitute segments of a joint regulatory region for 
both genes. This joint region has since been included 
in Genbank as the locus eco malba. Raibaud et al.'l 
have recently presented experimental evidence of 
four CRP footprint sites in the joint regulator region 
of locus eco lmalba. The segment at  positions 295 in 
eco malba, which overlaps the end of the eco malk 
locus listed in Figure 2, was identified as a footprint 
site to which CRP binds more tightly than to the 
other two CRP sites listed in Table I for eco malk. 
Raibaud et al. have also given the order of filling of 
these four sites. These sites correspond with the 
three sites in eco malk mentioned above and the site 
identified in eco male in Table I. Furthermore, the 
order in which these sites are filled in the footprint 
experiment agrees fully with the order of the pre- 
dicted probabilities from the final model, motif D. 

The secondary site in locus eco deopl is the 25th 
most likely binding site. All other secondary foot- 
print sites have predicted binding probabilities well 
below the outlier cut-off value. For example, the site 
a t  position 29 in eco malk in Figure 2 has a lower 
predicted binding probability than 180 other sites. 
On the other hand, the other three footprint sites in 
eco malba are included in the group of outliers. 

It has recently been suggested" that Laplace's 
law of succession be used to smooth sampling zeros 
in a motif derived, as here, from a small database in 
order to  search a large one. We therefore repeated 
the search of the 31,614 potential segments with the 
smoothed version of motif D. The results were es- 
sentially identical to those from the unsmoothed 
search except that a new site, trn9cat position 493, 
now appears above the cut-off. This sequence has a 
G a t  position 6, previously unobserved in motif D. 
This site is in the coding region of the cat1 gene. 

DISCUSSION 
The ability of the algorithm to examine motifs 

that encompass the correlative effects of multiple 
residues, which may be nonadjacent in sequence, is 
a feature not available in previous algorithms. This 
feature greatly expands the range of problems that 
can be investigated. The ability of the methods pre- 
sented here to characterize the binding motif as it 
identifies the sites through the application of suc- 

cessive models is another new feature. A rigorous 
statistical test, the likelihood ratio test, allows for 
rejection vs. acceptance of models as (in)consistent 
with the data. As is illustrated in the example, the 
stepwise application of this test allows for the char- 
acterization of the binding motif from unaligned se- 
quence data alone. The ability to determine the 
length of the site most consistent with unaligned 
sequence data is another feature not available in 
previous algorithms. 

As is illustrated in the CRP example, the incorpo- 
ration of such features into more specific models im- 
proved the identification of footprint sites. This im- 
provement stemmed from the fact that the more 
specific models have fewer free parameters to be es- 
timated from the data. Specifically, the mononucle- 
otide model required 66 parameters, i.e., 66 degrees 
of freedom, whereas the final model required only 28 
parameters. Consequently, the more specific final 
model brought substantially more a priori informa- 
tion, in the form of structural considerations, to the 
data analysis problem; substantially less informa- 
tion need come from the data. In this example, the 
mononucleotide model identified a substantial pro- 
portion of the footprint sites reflecting the substan- 
tial information in the sequence data. In cases in 
which there are fewer sequences available or the 
sites have lower similarity, we expect more specific 
models to show an even larger advantage in the cor- 
rect identification of the binding sites. When bind- 
ing sites are unknown, there is a danger of employ- 
ing a model whose specific characteristics are 
inappropriate for the unidentified sites. However, in 
that event, the likelihood ratio tests provide evi- 
dence to reject the inappropriate model, as was il- 
lustrated by model E in Table 11. 

Nearly all other methods used for the identifica- 
tion of features in sequences focus on the identifica- 
tion of the single best site. This approach brings 
with it the requirement that order statistics and ex- 
treme theory be employed for statistical inferences. 
The approach we have taken avoids this problem by 
modeling the problem as a mixture of models a t  all 
possible sites. Thus, the contributions from all pos- 
sible sites are included in all the parameter esti- 
mates, and the need for the selection of the best site 
is avoided. Statistical inferences for mixtures are 
also frequently problematic due to the discontinuity 
of the log likelihood at  the boundaries of the param- 
eter space. However, as was first described by Aitkin 
and Rubin,14 these discontinuities are circumvented 
through the use of a Bayesian approach. We have 
employed their approach here to  maintain the valid- 
ity of the assumptions underlying the likelihood ra- 
tio test. 

The method proposed here is directly applicable to  
the identification of common sites in protein se- 
quence, given a reasonable description of the motif 
hypothesized to be shared by the sites. With pro- 
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teins, the need for nonmonoresidue models is appar- 
ent from the large number of residues, 20, at  each 
position. The use of alternate alphabets, which 
group residues by a common characteristic, such as 
charge, provides an initial step. However, several 
characteristics at  once may be required to describe a 
motif adequately, in which case a multivariate motif 
model may be required. The interaction of nonadja- 
cent residues in proteins is frequently important to  
there structure. Thus the ability of the methods 
given here to  incorporate the correlative effects of 
nonadjacent residues may be of considerable value 
in this respect. The use of variable-length gaps may 
also be important. 

The memory requirements for this algorithm are 
relatively small and are linearly dependent on both 
the number of sequences and their length. Only 
three small arrays need to be stored the data 
(0” x L]); the matrix of expected sufficient statis- 
tics (three elements for each element in the site); the 
vector of posterior probabilities (O[Ll elements). In 
contrast to  the algorithm of Stormo and Hartzell,’ 
the power and convergence properties of this algo- 
rithm do not depend on the amount of memory em- 
ployed to store these arrays. This problem is a mem- 
ber of the class of problems known as finte mixtures. 
The convergence properties of the EM algorithm for 
finite mixtures have been reviewed a t  length.23 
Stated briefly, for these problems, the EM algorithm 
more consistently converges than do Newtom-type 
methods, but the convergence is slower. Also, the log 
likelihood for these problems can have multiple op- 
timals. There is currently no algorithm that can en- 
sure convergence to the global optimal. Thus multi- 
ple starting points are recommended. We have found 
that, for the problem presented here, the algorithm 
consistently converges to  a solution that identified 
the majority of the binding sites t o  within plus or 
minus one base. 

CONCLUSIONS 
The finding of a palindromic motif for the major 

grooves is consistent with the dimeric form of CRP. 
However, as indicated by the differences in the cen- 
tral minor groove, the overall binding motif de- 
scribed by our final model is not symmetric. This is 
consistent with evidence that the two subunits are 
not fully symmetric in cocrystals with  CAMP.^^ The 
finding that only pairs rather than bases can be dis- 
tinguished in the minor grooves is consistent with 
the available hydrogen bonding contacts in the mi- 
nor grooves of B-DNA.17 We note, however, that pair 
specificity does not necessarily require the forma- 
tion of such bonds. Rather, this pair specificity could 
also arise from the bending requirements for the 
DNA in complex with CRP.24,25 Our findings on the 
size of the site agree with the ethylation experi- 
ments. We were unable to confirm electrophoretic 

measurements indicating a site larger than 22 
bases. l8 

The observation that the primary footprint sites 
in all but one of the target sequences are outliers 
ke., they are not drawn from the population that 
represents nearly all other segments of 22 bases in 
the E .  coli genome) suggests that CRP selectively 
binds to these sites. The finding that there are many 
segments with higher site probabilities than the sec- 
ondary footprint sites indicates that there is a set of 
“pseudosites” that CRP may bind to as well as it 
does to  secondary footprint sites.15 

As the quantity of DNA sequence data grows, 
methods for the identification and description of im- 
portant features will become increasingly impor- 
tant. Projects such as the Human Genome Initi- 
ative26 will greatly expand the requirement for such 
tools. We present here a statistical method that goes 
beyond existing methods in its ability simulta- 
neously to  identify and to characterize sites in un- 
aligned sequences. The identification of sequence 
patterns with variable-length gaps is a natural ex- 
tension of the analysis presented here by the intro- 
duction of a second missing variable, the gap length. 
Thus extensions to multiple alignment problems ap- 
pear promising. 
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APPENDIX 

base in the site will be located at  position 1 = j +- k 
- 1 of the sequence. Let vb,,,, be an indicator vari- 
able for base b in position 1 of sequence n, and let A 
represent the set of positions not in the site. Also, let 
Yn,k, a position indicator variable, equal 1 if a site 
starts a position k in sequence n and 0 otherwise. 
Then the probability of observing the data in the nth 
sequence, S,, if the site starts a t  positions k and the 
population base frequency estimates are p'q' is: 

where 

j' = j + k - 1, and ubj.,, = q,j + k ~ l,n 
forj = 1 , 2 , .  . . J 

and 

Applying Bayes formula, we calculate the proba- 
bility that the site starts at  position k as follows: 

p ( y n , k  = l / f i (q l , sn )  

k=O 

where fiCq) are the estimates of the population base 
frequencies after (q) iterations of the algorithm, and 
Po(Y,,k) are the prior probabilities that the site is 
located at  position k in sequence n. To avoid solu- 
tions near the boundaries, we do not estimate these 
values. Thus the method presented here is a special 
case of the methods presented by Aitkin and 

The conditional probability that the site of inter- 
est begins at  position k in the nth sequence, given 
the estimates of the parameters at the end of the qth 
iteration, p'q', and the sequence data is calculated as 

Rubin.14 In this application, we assume that at  the 
outset we are completely ignorant about the posi- 
tions of the sites in all sequences, i.e., that the site is 
equally likely to  occur in any position, Po(Y,,,) = 

follows. l/(L - J + 11, k = 1 . . . (L - J + 1). 




