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Conventions and notations

1 X ,Y � spaces;

2 |X | = L � size of an alphabet;

3 X ,Y discrete random variables (X : Ω→ X );

4 PX (xi ) probability.

5 probability functions p, f
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EM � algorithm

An algorithm for �nding the maximum likelihood estimate of the
parameters of the �nite mixture.
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Mixtures

Let us suppose that {(X1,Y1), . . . , (Xn,Yn)} = {(Xl ,Yl )}nl=1
is a

sequence of independent (pairs of) random variables with the same
distribution and for every l and j = 1, 2, . . . L we have:

αj = P(Xl = xj)

and for any y ∈ Y

p(y |φj) = P(Yl = y |Xl = xj).

We also take θ as the parameter with:

θ = (α1, α2, . . . αL;φ1, φ2, . . . , φL).
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Mixtures � properties

We think initially about two data sequences y = (y1, y2, . . . , yn)
and x = (xj1 , xj2 , . . . xjn). The assumption of pairwise independence
means that:

p(x, y|θ) = Πn
l=1

P(Yl = yl ,Xl = xjl |θ) = Πn
l=1

p(yl |φjl ) · αjl .

Remark

The goal is to estimate θ in a situation where the sequence of x is
hidden.
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Mixtures � notations

Using the rules for computing marginal distributions, we get for any
(Xl ,Yl )

f (y |θ) =
L∑

j=1

P(Xl = xj ,Y = y |θ)

so that

f (y |θ) =
L∑

j=1

p(y |φj)αj .

where f (y |θ) is a �nite mixture whereas {αj}Lj=1
is called mixing

distribution.
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Likelihood and missing information

The likelihood function for y with relation to θ is:

p(y|θ) = f (y1|θ) · f (y1|θ) · . . . · f (yn|θ).

The maximum likelihood estimate is

θ̂ = argmaxθp(y|θ),

but how to include information about �hidden� x?
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missing information � posterior probability

We start with the posterior probability

p(x|y, θ) =
p(x, y|θ)

p(y|θ)
.

In other words

p(x|y, θ) = Πn
l=1

p(yl |φjl )αjl

f (yl |θ)
.
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missing information � posterior probability

Therefore, we get

log(p(y|θ)) =
n∑

l=1

log(p(yl |φjl ))αjl − log(p(x|y, θ)).

Remark

We shal continue by giving a lower bound for log(p(y|θ)).
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The EM algorithm � Quasi-log likelihood

Let us suppose that we have obtained an approximation θ(t) to the
estimate θ̂ with

θ(t) = (α
(t)
1
, . . . , α

(t)
L ;φ

(t)
1
, . . . , φ

(t)
L )

Remark

The general idea is to improve θ(t) so as to get closer to θ̂.
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The EM algorithm � Quasi-log likelihood

It is clear that :)

log(p(y|θ)) =
∑
x

p(x|y, θ(t))log(p(x, y|θ))−
∑
x

p(x|y, θ(t))log(p(x|y, θ)).

We introduce also the auxiliary function

Q(θ|θ(t)) =
∑
x

p(x|y, θ(t))log(p(x, y|θ))

and let us consider:

log(p(y|θ))− log(p(y|θ(t))).
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The EM algorithm � Quasi-log likelihood

It is easy to see :)

log(p(y|θ))− log(p(y|θ(t))) ­ Q(θ|θ(t))− Q(θ(t)|θ(t))

Therefore, if we determine

θ(t+1) = argmaxθQ(θ|θt)

we have found an estimate θ(t+1) such that

log(p(y|θ(t+1))) ­ log(p(y|θ(t)))

and we have improved on θ(t) in the sense of increased likelihood.
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Step E and step M

1 Start: An estimate θ(t) given by

θ(t) = (α
(t)
1
, . . . , α

(t)
L ;φ

(t)
1
, . . . , φ

(t)
L )

2 Step E: Calculate the conditional expectation:

Q(θ|θ(t)) =
∑
x

p(x|y, θ(t))log(p(x, y|θ))

3 Step M: Determine θ(t+1) by

θ(t+1) = argmaxθQ(θ|θ(t)).

Let θ(t+1) → θt and repeat from step E.
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Improtant Questions

1 Is this really an algorithm?

2 Does it converge ?

3 Does this converge to a global/local maximum of the
likelihood function?
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An explicit form of step M

Q(θ|θ(t)) =
L∑
jl

. . .
L∑
jn

Πn
l=1

p(yl |φ
(t)
jl

)α
(t)
jl

f (yl |θ(t))
· logΠn

l=1
p(yl |φjl ) · αjl

A simple calculations shows that

Q(θ|θ(t)) =
L∑

j=1

n∑
l=1

log(p(yl |φj)αj)
p(yl |φ

(t)
j )α

(t)
j

f (yl |θ(t))
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An explicit form of step M

Therefore:

α
(t+1)
j =

1

n

n∑
l=1

p(yl |φ(t)j )α
(t)
j

f (yl |θ(t))

and

φ
(t+1)
j = argmaxφj

n∑
l=1

log(p(yl |φj))
p(yl |φ

(t)
j )αt

j

f (yl |θ(t))
.
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