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Conventions and notations

Q@ X,) — spaces;

@ |X| = L - size of an alphabet;

© X, Y discrete random variables (X : Q — X);
© Px(x;) probability.

@ probability functions p, f
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EM - algorithm

An algorithm for finding the maximum likelihood estimate of the
parameters of the finite mixture.
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Let us suppose that {(X1, Y1),...,(Xp, Ya)} = {(X1, V1)}]_; is a
sequence of independent (pairs of) random variables with the same
distribution and for every [ and j =1,2,...L we have:

aj = P(X) = xj)
and for any y € Y
p(yloj) = P(Yr = y|Xi = x).
We also take 6 as the parameter with:

0= (a1, 00,...aL;¢1,¢2,...,0L).
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Mixtures — properties

We think initially about two data sequences 'y = (y1,¥2,...,¥n)
and x = (Xj;, Xj,, - - - Xj,). The assumption of pairwise independence
means that:

p(x,y10) = N1 P(Y; = yi, Xi = x;10) = NIy p(yil9j,) - -
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Mixtures — properties

We think initially about two data sequences 'y = (y1,¥2,...,¥n)
and x = (Xj;, Xj,, - - - Xj,). The assumption of pairwise independence
means that:

p(x,y10) = N1 P(Y; = yi, Xi = x;10) = NIy p(yil9j,) - -

The goal is to estimate 6 in a situation where the sequence of x is
hidden.
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Mixtures — notations

Using the rules for computing marginal distributions, we get for any
(X1, V1)

L
F(yld) =>_ P(Xi=x,Y =ylf)
j=1
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Mixtures — notations

Using the rules for computing marginal distributions, we get for any

(X1, Y1)
L
f(yl0) =D P(Xi=x,Y = y|0)
j=1
so that ,
F(yl0) =>_ pylej)e;
s

where f(y|0) is a finite mixture whereas {ozj}}zl is called mixing
distribution.

Pawet Bfazej Department of Genomics, Faculty of Biotechr HMM for Bioinformatics



Likelihood and missing information

The likelihood function for y with relation to 6 is:
p(yl0) = f(y1l0) - £(y1l0) - ... - f(ynl0).
The maximum likelihood estimate is

0 = argmaxyp(y|0),
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Likelihood and missing information

The likelihood function for y with relation to 6 is:
p(YI0) = FOI0) - F(5a16) - .- Flyal6).
The maximum likelihood estimate is
6 = argmaxgp(y|9),

but how to include information about “hidden” x7
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missing information — posterior probability

We start with the posterior probability

_ p(x,y|6)
P00 =yl
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missing information — posterior probability

We start with the posterior probability

_ p(x,y|6)
P00 =yl

In other words
P(yild) )y,

p(X|y’9) = I17:1 f()/l‘g)
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missing information — posterior probability

Therefore, we get

log(p(y|0)) Z/og p(yil9;))ey, — log(p(xly, 9)).
=1
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missing information — posterior probability

Therefore, we get

log(p(y|0)) Z/og p(yil9;))ey, — log(p(xly, 9)).
=1

We shal continue by giving a lower bound for log(p(y|0)).
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The EM algorithm — Quasi-log likelihood

Let us suppose that we have obtained an approximation () to the
estimate 6 with

9(1’) = (ag”, e ,a;_t); ¢g_t)7 M 7¢(Lt))
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The EM algorithm — Quasi-log likelihood

Let us suppose that we have obtained an approximation () to the
estimate 6 with

9(1’) = (agt), e ,a;_t); ¢g_t)7 M 7¢(Lt))

The general idea is to improve 6(t) so as to get closer to 6.
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The EM algorithm — Quasi-log likelihood

It is clear that :)

log(p(y9)) ZP (xly, 0 log(p(x,y10)) = p(xly, 0)log(p(xly. 0)).

We introduce also the auxiliary function

Qo]0 Zp (xly, 0)log(p(x,y|0))

and let us consider:

log(p(y|0)) — log(p(y|6?))).
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The EM algorithm — Quasi-log likelihood

It is easy to see :)
log(p(y|#)) — log(p(y|67)) > Q(6167) — @(6")|6(1))
Therefore, if we determine
00+ — argmaxy Q(0]6%)
we have found an estimate 6(t*1) such that

log (p(y|0“™)) > log(p(y|6'?))

and we have improved on 6(%) in the sense of increased likelihood.
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Step E and step M

© Start: An estimate 0(9) given by

e(t) = (ag.t)’ s 7a(Lt); ¢§.t)a ) (Lt))
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Step E and step M
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Step E and step M

© Start: An estimate 0(9) given by
9(1‘) = (ag.t)’ s 7a(Lt); ¢§.t)a ey S_t))
@ Step E: Calculate the conditional expectation:

Q(016™) =3 p(xly, 8)log(p(x, y|))

© Step M: Determine A(t+1) by
00+ = argmaxy Q(0]6(1).

Let #(t+1) — 9t and repeat from step E.
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Improtant Questions

Q s this really an algorithm?

Pawet Bfazej Department of Genomics, Faculty of Biotechr HMM for Bioinformatics



Improtant Questions

Q s this really an algorithm?

@ Does it converge 7
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Improtant Questions

Q s this really an algorithm?
@ Does it converge 7

© Does this converge to a global/local maximum of the
likelihood function?
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An explicit form of step M

(t)y,. (1)
n P(YIW ) n
(e‘e(t Z Zn % lognl:lP()’l’(bj/) C Qg

Ji
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An explicit form of step M

(t)y,. (1)
. Pl ") n
Q(G\Q(t Z Z M= 71’9 t))JI /ogl’l,zlp(y/]qu,) Qg

A simple calculations shows that

L p(ylo{)al"
Q(o g(t log (p(yi|¢j)ex PPy ey
v Z,Z 8PN )5y, )
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An explicit form of step M

Therefore: (t)
ol _ Z”:p (i )
n= fyl6®
and (1)
n t
¢j = argmaxy; ; /og(P(}’/WJ)) f(ylw(t)) )
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