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Learning of Markov chains

1 Maximum likelihood;

2 Bayesian estimation;
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Transition probability matrix

Let Θ be the transition probability matrix

Θ =


θ11 θ12 θ13 . . . θ1L
θ21 θ22 x23 . . . θ2L
. . . . . . . . . . . . . . . . . . . . . . .
θL1 θL2 θL3 . . . θLL



We are concerned with estimating the model Θ in the family of

probabilistic models p(x |Θ) for a (training) sequence X of n + 1

symbols in Sn+1
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Markov chains

p(x |Θ) = P(X0 = j0, . . . ,Xn = jn|Θ) = πj0(0)
n∏

i=1

θji−1|ji

Therefore, we have at most L2 − L trabsition parameters and the

J − 1 initial probabilities to estimate using the data X
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The conditional likelihood function

L(Θ) =
n∏

i=1

θji−1|ji

The corresponding log likelihood function is

L(Θ) =
n∑

i=1

lnθji−1|ji
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ML of the transition probability matrix

Let us introduce ni |j as a number of l such that

1 ¬ l ¬ n, jl−1 = i , jl = j

Using the frequency counts ni |j we can write the likelihood function

as

L(Θ) =
L∏

i=1

n∏
j=1

θ
ni|j
i |j .

The log likelihood will be

L(Θ) =
L∑

i=1

n∑
j=1

ni |j log(θi |j).
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ML of the transition probability matrix

Let us introduce ni as the number of l such that:

0 ¬ l ¬ n − 1, jl = i

Proposition

The maximum likelihood estimate θ̂i |j of θi |j is

θ̂i |j =
ni |j
ni
,

for all i , j .
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Posterior distribution of rows in the transition matrix

Let us assume that our uncertainty about the rows of Θ i.e.

θi = (θi |1, . . . , θi |L)

is modelled by independent random variables that have their

respective Dirichlet densities for i = 1, 2, . . . , L. These we formulate

as

Dir(θi , αiqi |1, . . . , αiqi |L) =
Γ(αi )∏L

j=1 Γ(αiqi |j)
·

L∏
j=1

θ
αiqi|j−1
i |j

where

αi > 0, qi |j > 0,
L∑

j=1

qi |j = 1.
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The multivariate Dirichlet densitiy

L∏
i=1

Dir(θi , αiqi |1, . . . , αiqi |L)
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The posterior distribution

p(Θ|X) =

∏L
i=1

Γ(αi )∏L

j=1
Γ(αiqi|j )

∏L
j=1 θ

ni|j+αiqi|j−1
i |j

p(X)

where p(X) is the standarization that makes p(Θ|X) a probability

density.
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Predictive probability

We may also pose a question: what is the probability of

P(Xn+1 = j |Xn = i ;X)?
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Predictive probability

P̂ML(Xn+1 = j |Xn = i ;X) = θ̂i |j
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Predictive probability

There are another way of addressing the stated question. we can

consider

P∗(Xn+1 = j |Xn = i ;X) =

∫
θi |jp(Θ|X)dθ

we get

P∗(Xn+1 = j |Xn = i ;X) =
nij + αiqi |j
ni + αi

.
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The Whittle Distribution

For any given X = (j0, j1, . . . , jn) we calculate ni |j and also let us

de�ne

ni |· =
L∑

j=1

ni |j , n·|j =
L∑

i=1

ni |j

for all i and j .

Therefore,

ni |· − n·|i = δij0 − δijn

and
L∑

j=1

ni |j =
L∑

i=1

ni |j = n.
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The Whittle Distribution

Let us de�ne:

F = (ni |j)
L,L
i=1,j=1

is a J × J matrix of non-negative integers.
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The Whittle Distribution � Proposition

Let F be an J × J matrix of non-negative integers ni |j such that

L∑
i=1

L∑
j=1

ni |j = n

and

ni |· − n·|i = δiv − δvi
for some u, v ∈ L. Let Nn

u,v (F ) be the number of sequences

x = (j0, jj , . . . , jn) having the frequency count F and satisfying

j0 = u, jn = v . Then

Nn
u,v (F ) =

∏L
i=1 ni |·!∏L

i=1

∏L
j=1 ni |j !

· F ∗uv .
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The Whittle Distribution

F ∗uv is the (u, v)th cofactor of the matrix F ∗ = (fij). with the

components

f ∗ij =

δij −
ni|j
ni|·

if ni |· > 0

δij if ni |· = 0.
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