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Learning of Markov chains

@ Maximum likelihood;
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Learning of Markov chains

@ Maximum likelihood;

@ Bayesian estimation;
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Transition probability matrix

Let © be the transition probability matrix
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Transition probability matrix

Let © be the transition probability matrix

011 612 b13 N
o= 01 B2 xo3 01
01 O 013 01

We are concerned with estimating the model © in the family of
probabilistic models p(x|©) for a (training) sequence X of n+1
symbols in $"*1
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n

P(X|Q) = P(XO =Joy-+-Xn :Jn’@) = 7TJ'o(o) H Hji—l‘ji
i=1

Therefore, we have at most L2 — L trabsition parameters and the
J — 1 initial probabilities to estimate using the data X
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The conditional likelihood function
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The conditional likelihood function

L(e) = H 0'i71|ji
i=1

The corresponding log likelihood function is

L(©) = Z lne'ifl\ji
i=1
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ML of the transition probability matrix

Let us introduce n;j; as a number of / such that

li

1<I<n, jioa=1i, ji=jJ
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ML of the transition probability matrix

Let us introduce n;j; as a number of / such that

i
1<I<n, jioa=1i, ji=jJ

Using the frequency counts n;; we can write the likelihood function

as

il

L n
L©)=TI1I6:

i=1j=1
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ML of the transition probability matrix

Let us introduce n;j; as a number of / such that

i
1<I<n, jioa=1i, ji=jJ

Using the frequency counts n;; we can write the likelihood function

as

il

L n
L©)=TI1I6:

i=1j=1

The log likelihood will be

L n
L(©) =D njjlog(b;;).

i=1 j=1
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ML of the transition probability matrix

Let us introduce n; as the number of / such that:

0</I<n—1,ji=i

Proposition

The maximum likelihood estimate 9/,\‘1 of 0 is

—~ "i g
by = 2,
n;

for all 7, j.
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Posterior distribution of rows in the transition matrix

Let us assume that our uncertainty about the rows of © i.e.
bi = (0i|17 s 79i\L)

is modelled by independent random variables that have their
respective Dirichlet densities for i = 1,2,..., L. These we formulate
as

L
r(Oéi) ) H eaiqi\jfl

Dir(0;, iqipys - - -, iQij) = =————— .
T Migy) o

where

L
a;j >0, g5, >0, Zqiu =1.
=
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The multivariate Dirichlet densitiy

L

11 Dir(6i, cigip, - - -, cvigqige)
=1
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The posterior distribution

HL (i) HI‘_ H”ili"'o‘iqi\f_l

i=1 17t M(aias;) J=1"1)j
0|X) = IS
p(©IX) (%)
where p(X) is the standarization that makes p(©|X) a probability

density.
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Predictive probability

We may also pose a question: what is the probability of

P(Xnp1 = j|1Xo = i: X)?
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Predictive probability

o~

PuL(Xnt1 = j| X = i; X) = 0y
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Predictive probability

There are another way of addressing the stated question. we can

consider
P*(Xat1 =X = i:X) = [ b1yp(©IX)d8
we get
. : njj + «;qj;
P* Xn — Xn — ,X — #
(Xasr = 1% = i:X) = 2210
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The Whittle Distribution

For any given X = (jo, j1,- - -,Jjn) we calculate n;; and also let us

define
L L
ni= Y M, ny= Y0
j=1 i—1

for all i and j.
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The Whittle Distribution

For any given X = (jo, j1,- - -,Jjn) we calculate n;; and also let us

define
L L
=D nij np= Dy
j=1 i=1
for all i and j. Therefore,
n,-|, — n,|,- = (5,‘1'0 - 5ijn

and

Z"u Z”u
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The Whittle Distribution

Let us define:
LL
F = (nijj)iz1 j=1

is a J x J matrix of non-negative integers.
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The Whittle Distribution — Proposition

Let F be an J x J matrix of non-negative integers n;|; such that

L L
DD m=n

i=1 j=1
and
njj. — n.j; = Ojy — Oy

for some u,v € L. Let Ny, (F) be the number of sequences
X = (jo,Jj, - - - »Jn) having the frequency count F and satisfying
Jjo=u, jo=v. Then

L

N (F) = —di=t M pe
oY [T Iy gt
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The Whittle Distribution

Fy, is the (u, v)th cofactor of the matrix F* = (f;). with the
components
B n,-‘- .
Fr = 5,1—?'{ |fn,-|.>0
! 5’./ if n,-|_ =0.
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