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@ Hidden Markov models (HMMs) form the basis for the
majority of gene finders in use today;
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@ Hidden Markov models (HMMs) form the basis for the
majority of gene finders in use today;
@ A number of extensions to the HMM formalism exist which

have been found invaluable in achieving the accuracy and
flexibility required of a practical, state-of-the-art gene finder.
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We introduce the notion of a hidden Markov model as a stochastic
machine denoted by a 6-tuple:

M = (Q,Oé, Ptvqovqfape)

where
@ state set Q;
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We introduce the notion of a hidden Markov model as a stochastic
machine denoted by a 6-tuple:

M = (Q,Oé, Ptvqovqfape)

where
O state set Q;
Q alphabet o;
© transition distribution P; : Q@ x Q@ — R;
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We introduce the notion of a hidden Markov model as a stochastic
machine denoted by a 6-tuple:

M = (Q,Oé, Ptvqovqfape)

where
O state set Q;
Q alphabet o;
© transition distribution P; : Q@ x Q@ — R;
Q initial state g¢°;
O final state qf;
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We introduce the notion of a hidden Markov model as a stochastic
machine denoted by a 6-tuple:

M = (Q,Oé, Ptvqovqfape)

where
O state set Q;
Q alphabet o;
© transition distribution P; : Q@ x Q@ — R;
Q initial state g¢°;
O final state qf;
o

emission distribution P, : @ x o« — R.
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Conventions

© We reserve the symbol g for particular states in the model:
Q = {q07 ai,---,dm-1, qf}: for m= ‘Q|1
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Conventions

© We reserve the symbol g for particular states in the model:
Q={q%a, .., qm 1,9}, for m=[Q|;

@ We denote the elements of the list using some generic variable
(sequence of hidden states), such as y i.e.,
o= 0,y1,---,¥n-1) for n =14|.
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Conventions

© We reserve the symbol g for particular states in the model:
Q={q%a, .., qm 1,9}, for m=[Q|;

@ We denote the elements of the list using some generic variable
(sequence of hidden states), such as y i.e.,
o= 0,y1,---,¥n-1) for n =14|.

© For convenience, we will always assume g = ¢° that is, the

Oth state in @ will always serve the function of initial and final
state for the HMM;
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Conventions

© Thus, we can now denote an HMM more compactly as:

M= (Q,a, P, Pe).
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Conventions

© Thus, we can now denote an HMM more compactly as:
M= (Q,a, P, Pe).

@ We reserve the letter s for the elements of the alphabet
a={sy,...,sk_1} for k = |a;
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Conventions

© Thus, we can now denote an HMM more compactly as:
M= (Q,a, P, Pe).

@ We reserve the letter s for the elements of the alphabet
a={sy,...,sk_1} for k = |a;

© When dealing with an output sequence S we will use a generic
variable such as x to denote the individual symbols in the
sequence: S = xp,...,x 1, for L =|§].
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Simple explanation

@ a machine M operates by starting in state ¢°;

Pawet Bfazej Department of Genomics, Faculty of Biotechr HMM for Bioinformatics



Simple explanation

@ a machine M operates by starting in state ¢°;

@ transitioning stochastically from state to state according to
Pe(yilyi-1), for {yi,yi-1} € @;
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Simple explanation

@ a machine M operates by starting in state ¢°;

@ transitioning stochastically from state to state according to
Pe(yilyi-1), for {yi,yi-1} € @;

© Upon an entering a state g, the machine emits a symbol s
according to Pe(s|q);
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Simple explanation

@ a machine M operates by starting in state ¢°;

@ transitioning stochastically from state to state according to
Pe(yilyi-1), for {yi,yi-1} € @;

© Upon an entering a state g, the machine emits a symbol s
according to Pe(s|q);

Q terminating in state g°.
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Simple example

Let us consider a simple example:

Ml = ({quq17q2}a{Y7 R}a'DtaPe)

where

Pt — {(q07 qi1, 1)) (q17 a1, 08)7 (q17 q2, 015)7 (qlu qo, 005))

(92,92,0.7), (g2, 91,0.3)}

and

'De = {(qlv Yv 1)7 (q,17 R,O), (Q27 Y>0)7 (q2> Ra 1)}
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Simple example

A single run of M, might produce the sequence S:

YRYRY .

An another run of the HMM we might observe S:

YRYYRYRRY .
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HMM — example

@ TO_®
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The probability of P(S|M)

P(YRYRY|M;) =
ag1X b1y xaipxbygpxay.1xbryxaoXbygXxar.1xbyy.

where a;_,; denotes P:(q;|qi) whereas b; s denotes P.(s|q;).
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Representing of HMMs

An HMM with states: @ = {q1,92,...,qn—1} and alphabet
a={sp,s1,...,Sm—1} can be represented very simply in software
by utilizing two matrices:
@ for the emissions probabilities, i.e. n x m matrix E = (Ej)
where Ejj = Pe(sj|qi) ;
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Representing of HMMs

An HMM with states: @ = {q1,92,...,qn—1} and alphabet
a={sp,s1,...,Sm—1} can be represented very simply in software
by utilizing two matrices:
@ for the emissions probabilities, i.e. n x m matrix E = (Ej)
where Ejj = Pe(sj|qi) ;
@ for the transitions probabilities, i.e. n x n matrix P = (Pj;)
where P = P:(qj|qi).
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The three basic problems for HMMs

@ Given the observation sequence S = x1, X2, ..., X, and the
model M = (Q, a, qo, P¢, Pe) how do we choose a
corresponding hidden state sequence y1, s, ..., ¥k which is

optimal in some meaningful sense?
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The three basic problems for HMMs

@ Given the observation sequence S = x1, X2, ..., X, and the
model M = (Q, a, qo, P¢, Pe) how do we choose a
corresponding hidden state sequence y1, s, ..., ¥k which is

optimal in some meaningful sense?

@ Given the observation sequence S = x1,x2,...,x, and the
model M = (Q, a, qo, Pt, Pe) how do we efficiently compute
P(S|M), the probability of the observation sequence, given the
model?
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The three basic problems for HMMs

@ Given the observation sequence S = x1, X2, ..., X, and the
model M = (Q, a, qo, P¢, Pe) how do we choose a
corresponding hidden state sequence y1, s, ..., ¥k which is

optimal in some meaningful sense?

@ Given the observation sequence S = x1,x2,...,x, and the
model M = (Q, a, qo, Pt, Pe) how do we efficiently compute
P(S|M), the probability of the observation sequence, given the
model?

© How do we adjust the model parameters
M = (Q, a, qo, P, Pe) to maximize P(S|M)?
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Finding the most probable path

Decoding with an HMM can be performed using a dynamic
programming procedure called the Viterbi algorithm. Given a model

M:(Q7a7’Dt)Pe)

with n hidden states and a nonempty sequence of emmited states

S =XoXt,-- -, XL-1,

the algorithm operates by progresively computing to find the most
probable path.
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Finding path — notations

The most probable path after the step k

ik =Y, Y1 (Vogj<kt1yj € @ Yo = qo, Yi+1 = i)

ending in state g; at the position k whereby the model M could
have generated the subsequence

X0y X1y« - 5 Xk-
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Finding path — notations

Therefore:

i p = argmaxy. | +q;[P($jk—1,%0, - xt—1) - Pe(qilqj)Pe(xklqi)] if k>0
ik qoq; if k=0.
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Finding path — notations

Therefore:

i p = argmaxy. | +q;[P($jk—1,%0, - xt—1) - Pe(qilqj)Pe(xklqi)] if k>0
ik qoq; if k=0.

where

max;[P(¢j k—1,X0, -, xt—1) - Pe(qilqj)Pe(xlqi)] if k>0

P(o; 3 X0y - XL—1) = .
(9.6 %0 xt-1) {Pt(qqu)Pe(X0|qi) if k=0.
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Finding path — notations

Once we have computed ¢; , for all states g; and all positions k in
the sequence, it is then a simple matter to select the most probable
path for the full sequence of S by comparatively enumerating all
paths ending at the last symbol x; 1, with the additional
consideration that the last act of the machine after emiting x; 1
must have been to transition into state gg.

¢ = argmaxg, ,_ P(¢i1-1,5)Pt(qolqi)
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The Viterbi algorithm — notations

The Viterbi algorithm utilizes the following dynamic programming
recurrence to efficiently compute the probabilities P(¢; «, So.. x) of
the prospective paths:

V(i k) _ man[V(j,k — 1)Pt(q,-|qj)Pe(xk|q,-)] if k>0
7 Pe(qi|qo)Pe(xo0qi) if k=0.
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The Viterbi algorithm — notations

The Viterbi algorithm utilizes the following dynamic programming
recurrence to efficiently compute the probabilities P(¢; «, So.. x) of
the prospective paths:

V(i k) _ man[V(j, k — 1)Pt(q,-|qj)Pe(xk|q,-)] if k>0
7 Pe(qi|qo)Pe(xo0qi) if k=0.

Clearly, V(i, k) represents the probability P(¢; k, Sp...x) of the most probable path
@i k which ends at the state g; and emits the subsequence xg, ..., xk.
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The Viterbi algorithm — notations

The optimal predecessor link T (i, k)

T(i, k) = argmax;[V (j, k — 1)Pt(qi|qj) Pe(xk|qi)] if k>0
’ Pt(qi|go)Pe(xolai) if k=0.

Each element T (i, k) is thus a state index j for the optimal predecessor g; of g; at
position k in the sense that the optimal path ¢; , must have as its last transition
qi — qi-
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The Viterbi algorithm
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Computing probability of a sequence

© A procedure very similar to the Viterbi algorithm can be used
to find the probability that a given model M emits (nonempty)
sequence S during any given run of the machine i.e. P(S|M);
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Computing probability of a sequence

© A procedure very similar to the Viterbi algorithm can be used
to find the probability that a given model M emits (nonempty)
sequence S during any given run of the machine i.e. P(S|M);

@ Because M may potentially emit S via any number of paths
through the states of the model, to compute the full
probability of the sequence we need to sum over all possible
paths emiting S.
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The forward algorithm

1 fork=0,7/=0
0 for k>0,i=0
F(i,k)=40 for k=10,i>0
526 FG k= 1)Pe(aila)Pe(xilar) for 1<k <S],
1<i<|Q
Therefore:
Q-1

P(S|M) = Z F(i,|S1)P:(qolqi)
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