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1 Hidden Markov models (HMMs) form the basis for the

majority of gene �nders in use today;

2 A number of extensions to the HMM formalism exist which

have been found invaluable in achieving the accuracy and

�exibility required of a practical, state-of-the-art gene �nder.
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De�nition

We introduce the notion of a hidden Markov model as a stochastic

machine denoted by a 6-tuple:

M = (Q, α,Pt , q
0, qf ,Pe)

where

1 state set Q;

2 alphabet α;

3 transition distribution Pt : Q × Q → R;

4 initial state q0;

5 �nal state qf ;

6 emission distribution Pe : Q × α→ R.
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Conventions

1 We reserve the symbol q for particular states in the model:

Q = {q0, q1, . . . , qm−1, qf }, for m = |Q|;

2 We denote the elements of the list using some generic variable

(sequence of hidden states), such as y i.e.,

φ = (y0, y1, . . . , yn−1) for n = |φ|.
3 For convenience, we will always assume qf = q0 that is, the

0th state in Q will always serve the function of initial and �nal

state for the HMM;
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Conventions

1 Thus, we can now denote an HMM more compactly as:

M = (Q, α,Pt ,Pe).

2 We reserve the letter s for the elements of the alphabet

α = {s0, . . . , sk−1} for k = |α|;
3 When dealing with an output sequence S we will use a generic

variable such as x to denote the individual symbols in the

sequence: S = x0, . . . , xL−1 , for L = |S |.
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Simple explanation

1 a machine M operates by starting in state q0;

2 transitioning stochastically from state to state according to

Pt(yi |yi−1), for {yi , yi−1} ⊆ Q;

3 Upon an entering a state q, the machine emits a symbol s

according to Pe(s|q);
4 terminating in state qf .
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Simple example

Let us consider a simple example:

M1 = ({q0, q1, q2}, {Y ,R},Pt ,Pe)

where

Pt = {(q0, q1, 1), (q1, q1, 0.8), (q1, q2, 0.15), (q1, q0, 0.05),

(q2, q2, 0.7), (q2, q1, 0.3)}

and

Pe = {(q1,Y , 1), (q,1,R, 0), (q2,Y , 0), (q2,R, 1)}.
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Simple example

A single run of M1, might produce the sequence S :

YRYRY .

An another run of the HMM we might observe S :

YRYYRYRRY .
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HMM � example

q0 q1 q2 qf
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The probability of P(S |M1)

P(YRYRY |M1) =

a0→1×b1,Y ×a1→2×b2,R×a2→1×b1,Y ×a1→2×b2,R×a2→1×b1,Y .

where ai→j denotes Pt(qj |qi ) whereas bi ,s denotes Pe(s|qi ).
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Representing of HMMs

An HMM with states: Q = {q1, q2, . . . , qn−1} and alphabet

α = {s0, s1, . . . , sm−1} can be represented very simply in software

by utilizing two matrices:

1 for the emissions probabilities, i.e. n ×m matrix E = (Eij)
where Eij = Pe(sj |qi ) ;

2 for the transitions probabilities, i.e. n × n matrix P = (Pij)
where Pij = Pt(qj |qi ).
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The three basic problems for HMMs

1 Given the observation sequence S = x1, x2, . . . , xk and the

model M = (Q, α, q0,Pt ,Pe) how do we choose a

corresponding hidden state sequence y1, y2, . . . , yk which is

optimal in some meaningful sense?

2 Given the observation sequence S = x1, x2, . . . , xk and the

model M = (Q, α, q0,Pt ,Pe) how do we e�ciently compute

P(S |M), the probability of the observation sequence, given the

model?

3 How do we adjust the model parameters

M = (Q, α, q0,Pt ,Pe) to maximize P(S |M)?
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Finding the most probable path

Decoding with an HMM can be performed using a dynamic

programming procedure called the Viterbi algorithm. Given a model

M = (Q, α,Pt ,Pe)

with n hidden states and a nonempty sequence of emmited states

S = x0x1, . . . , xL−1,

the algorithm operates by progresively computing to �nd the most

probable path.

Paweª Bªa»ej Department of Genomics, Faculty of Biotechnology, blazej@smor�and.uni.wroc.plHMM for Bioinformatics



Finding path � notations

The most probable path after the step k

φi ,k = y0, . . . , yk+1 (∀0¬j¬k+1yj ∈ Q; y0 = q0, yk+1 = qi )

ending in state qi at the position k whereby the model M could

have generated the subsequence

x0, x1, . . . , xk .
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Finding path � notations

Therefore:

φi,k =

{
argmaxφj,k−1

+qi
[P(φj,k−1, x0, . . . , xL−1) · Pt(qi |qj )Pe(xk |qi )] if k > 0

q0qi if k = 0.

where

P(φj,k , x0, . . . , xL−1) =

{
maxj [P(φj,k−1, x0, . . . , xL−1) · Pt(qi |qj )Pe(xk |qi )] if k > 0

Pt(qi |q0)Pe(x0|qi ) if k = 0.
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Finding path � notations

Once we have computed φi ,k for all states qi and all positions k in

the sequence, it is then a simple matter to select the most probable

path for the full sequence of S by comparatively enumerating all

paths ending at the last symbol xL−1, with the additional

consideration that the last act of the machine after emiting xL−1
must have been to transition into state q0.

φ′ = argmaxφi,L−1P(φi ,L−1, S)Pt(q0|qi )
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The Viterbi algorithm � notations

The Viterbi algorithm utilizes the following dynamic programming
recurrence to e�ciently compute the probabilities P(φi ,k , S0...k) of
the prospective paths:

V (i , k) =

{
maxj [V (j , k − 1)Pt(qi |qj )Pe(xk |qi )] if k > 0

Pt(qi |q0)Pe(x0|qi ) if k = 0.

Clearly, V (i , k) represents the probability P(φi,k , S0...k) of the most probable path

φi,k which ends at the state qi and emits the subsequence x0, . . . , xk .
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The Viterbi algorithm � notations

The optimal predecessor link T (i , k)

T (i , k) =

{
argmaxj [V (j , k − 1)Pt(qi |qj )Pe(xk |qi )] if k > 0

Pt(qi |q0)Pe(x0|qi ) if k = 0.

Each element T (i , k) is thus a state index j for the optimal predecessor qj of qi at

position k in the sense that the optimal path φi,k must have as its last transition

qj → qi .
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The Viterbi algorithm
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Computing probability of a sequence

1 A procedure very similar to the Viterbi algorithm can be used

to �nd the probability that a given model M emits (nonempty)

sequence S during any given run of the machine i.e. P(S |M);

2 Because M may potentially emit S via any number of paths

through the states of the model, to compute the full

probability of the sequence we need to sum over all possible

paths emiting S .
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The forward algorithm

F (i , k) =



1 for k = 0, i = 0

0 for k > 0, i = 0

0 for k = 0, i > 0∑|Q|−1
j=0 F (j , k − 1)Pt(qi |qj)Pe(xk |qi ) for 1 ¬ k ¬ |S |,

1 ¬ i ¬ |Q|

Therefore:

P(S |M) =

|Q|−1∑
i=0

F (i , |S |)Pt(q0|qi )
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