HMM for Bioinformatics

Paweł Błażej Department of Genomics, Faculty of Biotechnology, blazej@smorfland.uni.wroc.pl

3 kwietnia 2019

 Hidden Markov models (HMMs) form the basis for the majority of gene finders in use today;

- Hidden Markov models (HMMs) form the basis for the majority of gene finders in use today;
- A number of extensions to the HMM formalism exist which have been found invaluable in achieving the accuracy and flexibility required of a practical, state-of-the-art gene finder.

$$M = (Q, \alpha, P_t, q^0, q^f, P_e)$$

where

• state set Q;

$$M = (Q, \alpha, P_t, q^0, q^f, P_e)$$

- state set Q;
- **2** alphabet α ;

$$M = (Q, \alpha, P_t, q^0, q^f, P_e)$$

- state set Q;
- **2** alphabet α ;
- **③** transition distribution $P_t: Q \times Q \rightarrow \mathbf{R}$;

$$M = (Q, \alpha, P_t, q^0, q^f, P_e)$$

- state set Q;
- 2 alphabet α ;
- **③** transition distribution $P_t: Q \times Q \rightarrow \mathbf{R}$;
- initial state q^0 ;

$$M = (Q, \alpha, P_t, q^0, q^f, P_e)$$

- state set Q;
- **2** alphabet α ;
- **③** transition distribution $P_t: Q \times Q \rightarrow \mathbf{R}$;
- initial state q^0 ;
- final state q^f ;

$$M = (Q, \alpha, P_t, q^0, q^f, P_e)$$

- state set Q;
- 2 alphabet α ;
- **③** transition distribution $P_t: Q \times Q \rightarrow \mathbf{R}$;
- initial state q^0 ;
- final state q^f ;
- emission distribution $P_e: Q \times \alpha \to \mathbf{R}$.

• We reserve the symbol q for particular states in the model: $Q = \{q^0, q_1, \dots, q_{m-1}, q^f\}$, for m = |Q|;

- We reserve the symbol q for particular states in the model: $Q = \{q^0, q_1, \dots, q_{m-1}, q^f\}$, for m = |Q|;
- We denote the elements of the list using some generic variable (sequence of hidden states), such as y i.e.,
 φ = (y₀, y₁,..., y_{n-1}) for n = |φ|.

- We reserve the symbol q for particular states in the model: $Q = \{q^0, q_1, \dots, q_{m-1}, q^f\}$, for m = |Q|;
- We denote the elements of the list using some generic variable (sequence of hidden states), such as y i.e.,
 φ = (y₀, y₁,..., y_{n-1}) for n = |φ|.
- For convenience, we will always assume q^f = q⁰ that is, the Oth state in Q will always serve the function of initial and final state for the HMM;

Thus, we can now denote an HMM more compactly as:

$$M = (Q, \alpha, P_t, P_e).$$

Thus, we can now denote an HMM more compactly as:

$$M = (Q, \alpha, P_t, P_e).$$

2 We reserve the letter *s* for the elements of the alphabet $\alpha = \{s_0, \ldots, s_{k-1}\}$ for $k = |\alpha|$;

Thus, we can now denote an HMM more compactly as:

$$M = (Q, \alpha, P_t, P_e).$$

- **2** We reserve the letter *s* for the elements of the alphabet $\alpha = \{s_0, \ldots, s_{k-1}\}$ for $k = |\alpha|$;
- When dealing with an output sequence S we will use a generic variable such as x to denote the individual symbols in the sequence: $S = x_0, \ldots, x_{L-1}$, for L = |S|.

• a machine M operates by starting in state q^0 ;

- a machine M operates by starting in state q^0 ;
- Itransitioning stochastically from state to state according to
 $P_t(y_i|y_{i-1})$, for $\{y_i, y_{i-1}\} \subseteq Q$;

- a machine M operates by starting in state q^0 ;
- It ansitioning stochastically from state to state according to
 $P_t(y_i|y_{i-1})$, for $\{y_i, y_{i-1}\} \subseteq Q$;
- Upon an entering a state q, the machine emits a symbol s according to P_e(s|q);

- a machine M operates by starting in state q^0 ;
- It ansitioning stochastically from state to state according to
 $P_t(y_i|y_{i-1})$, for $\{y_i, y_{i-1}\} \subseteq Q$;
- Upon an entering a state q, the machine emits a symbol s according to P_e(s|q);
- terminating in state q^f .

Let us consider a simple example:

$$M_1 = (\{q_0, q_1, q_2\}, \{Y, R\}, P_t, P_e)$$

where

$$P_t = \{(q_0, q_1, 1), (q_1, q_1, 0.8), (q_1, q_2, 0.15), (q_1, q_0, 0.05), \\ (q_2, q_2, 0.7), (q_2, q_1, 0.3)\}$$

and

$$P_e = \{(q_1, Y, 1), (q, 1, R, 0), (q_2, Y, 0), (q_2, R, 1)\}.$$

A single run of M_1 , might produce the sequence S:

YRYRY.

An another run of the HMM we might observe S:

YRYYRYRRY.

æ

э

/∄ ► < ∃ ►

$P(YRYRY|M_1) =$

 $a_{0 \to 1} \times b_{1,Y} \times a_{1 \to 2} \times b_{2,R} \times a_{2 \to 1} \times b_{1,Y} \times a_{1 \to 2} \times b_{2,R} \times a_{2 \to 1} \times b_{1,Y}.$ where $a_{i \to j}$ denotes $P_t(q_j | q_i)$ whereas $b_{i,s}$ denotes $P_e(s | q_i)$.

An HMM with states: $Q = \{q_1, q_2, \dots, q_{n-1}\}$ and alphabet $\alpha = \{s_0, s_1, \dots, s_{m-1}\}$ can be represented very simply in software by utilizing two matrices:

• for the emissions probabilities, i.e. $n \times m$ matrix $E = (E_{ij})$ where $E_{ij} = P_e(s_j | q_i)$;

An HMM with states: $Q = \{q_1, q_2, \dots, q_{n-1}\}$ and alphabet $\alpha = \{s_0, s_1, \dots, s_{m-1}\}$ can be represented very simply in software by utilizing two matrices:

- for the emissions probabilities, i.e. $n \times m$ matrix $E = (E_{ij})$ where $E_{ij} = P_e(s_j | q_i)$;
- for the transitions probabilities, i.e. $n \times n$ matrix $P = (P_{ij})$ where $P_{ij} = P_t(q_j | q_i)$.

The three basic problems for HMMs

Given the observation sequence S = x₁, x₂,..., x_k and the model M = (Q, α, q₀, P_t, P_e) how do we choose a corresponding hidden state sequence y₁, y₂,..., y_k which is optimal in some meaningful sense?

The three basic problems for HMMs

- Given the observation sequence S = x₁, x₂,..., x_k and the model M = (Q, α, q₀, P_t, P_e) how do we choose a corresponding hidden state sequence y₁, y₂,..., y_k which is optimal in some meaningful sense?
- Given the observation sequence $S = x_1, x_2, \ldots, x_k$ and the model $M = (Q, \alpha, q_0, P_t, P_e)$ how do we efficiently compute P(S|M), the probability of the observation sequence, given the model?

The three basic problems for HMMs

- Given the observation sequence S = x₁, x₂,..., x_k and the model M = (Q, α, q₀, P_t, P_e) how do we choose a corresponding hidden state sequence y₁, y₂,..., y_k which is optimal in some meaningful sense?
- Given the observation sequence $S = x_1, x_2, \ldots, x_k$ and the model $M = (Q, \alpha, q_0, P_t, P_e)$ how do we efficiently compute P(S|M), the probability of the observation sequence, given the model?
- How do we adjust the model parameters $M = (Q, \alpha, q_0, P_t, P_e)$ to maximize P(S|M)?

Decoding with an HMM can be performed using a dynamic programming procedure called the Viterbi algorithm. Given a model

$$M = (Q, \alpha, P_t, P_e)$$

with n hidden states and a nonempty sequence of emmited states

$$S = x_0 x_1, \ldots, x_{L-1},$$

the algorithm operates by progresively computing to find the most probable path.

The most probable path after the step k

$$\phi_{i,k} = y_0, \dots, y_{k+1} \ (\forall_{0 \leq j \leq k+1} y_j \in Q; \ y_0 = q_0, \ y_{k+1} = q_i)$$

ending in state q_i at the position k whereby the model M could have generated the subsequence

$$x_0, x_1, \ldots, x_k.$$

Therefore:

$$\phi_{i,k} = \begin{cases} \arg\max_{\phi_{j,k-1}+q_i} [P(\phi_{j,k-1}, x_0, \dots, x_{L-1}) \cdot P_t(q_i|q_j) P_e(x_k|q_i)] & \text{if } k > 0\\ q_0 q_i & \text{if } k = 0. \end{cases}$$

Therefore:

$$\phi_{i,k} = \begin{cases} \arg\max_{\phi_{j,k-1}+q_i} [P(\phi_{j,k-1}, x_0, \dots, x_{L-1}) \cdot P_t(q_i | q_j) P_e(x_k | q_i)] & \text{if } k > 0\\ q_0 q_i & \text{if } k = 0. \end{cases}$$

where

$$P(\phi_{j,k}, x_0, \dots, x_{L-1}) = \begin{cases} \max_j [P(\phi_{j,k-1}, x_0, \dots, x_{L-1}) \cdot P_t(q_i|q_j)P_e(x_k|q_i)] & \text{if } k > 0\\ P_t(q_i|q_0)P_e(x_0|q_i) & \text{if } k = 0. \end{cases}$$

Once we have computed $\phi_{i,k}$ for all states q_i and all positions k in the sequence, it is then a simple matter to select the most probable path for the full sequence of S by comparatively enumerating all paths ending at the last symbol x_{L-1} , with the additional consideration that the last act of the machine after emiting x_{L-1} must have been to transition into state q_0 .

$$\phi' = \operatorname{argmax}_{\phi_{i,L-1}} P(\phi_{i,L-1}, S) P_t(q_0|q_i)$$

The Viterbi algorithm utilizes the following dynamic programming recurrence to efficiently compute the probabilities $P(\phi_{i,k}, S_{0...k})$ of the prospective paths:

$$V(i,k) = \begin{cases} \max_{j} [V(j,k-1)P_t(q_i|q_j)P_e(x_k|q_i)] & \text{if } k > 0\\ P_t(q_i|q_0)P_e(x_0|q_i) & \text{if } k = 0 \end{cases}$$

The Viterbi algorithm utilizes the following dynamic programming recurrence to efficiently compute the probabilities $P(\phi_{i,k}, S_{0...k})$ of the prospective paths:

$$V(i,k) = \begin{cases} \max_{j} [V(j,k-1)P_t(q_i|q_j)P_e(x_k|q_i)] & \text{if } k > 0\\ P_t(q_i|q_0)P_e(x_0|q_i) & \text{if } k = 0. \end{cases}$$

Clearly, V(i,k) represents the probability $P(\phi_{i,k}, S_{0...k})$ of the most probable path $\phi_{i,k}$ which ends at the state q_i and emits the subsequence x_0, \ldots, x_k .

The optimal predecessor link T(i, k)

$$T(i,k) = \begin{cases} \arg\max_{j} [V(j,k-1)P_t(q_i|q_j)P_e(x_k|q_i)] & \text{if } k > 0\\ P_t(q_i|q_0)P_e(x_0|q_i) & \text{if } k = 0. \end{cases}$$

Each element T(i, k) is thus a state index j for the optimal predecessor q_j of q_i at position k in the sense that the optimal path $\phi_{i,k}$ must have as its last transition $q_j \rightarrow q_i$.

The Viterbi algorithm

A procedure very similar to the Viterbi algorithm can be used to find the probability that a given model *M* emits (nonempty) sequence *S* during any given run of the machine i.e. *P*(*S*|*M*);

- A procedure very similar to the Viterbi algorithm can be used to find the probability that a given model M emits (nonempty) sequence S during any given run of the machine i.e. P(S|M);
- Because M may potentially emit S via any number of paths through the states of the model, to compute the full probability of the sequence we need to sum over all possible paths emiting S.

The forward algorithm

$$F(i,k) = \begin{cases} 1 & \text{for } k = 0, \ i = 0 \\ 0 & \text{for } k > 0, \ i = 0 \\ 0 & \text{for } k = 0, \ i > 0 \\ \sum_{j=0}^{|Q|-1} F(j,k-1) P_t(q_i|q_j) P_e(x_k|q_i) & \text{for } 1 \le k \le |S|, \\ 1 \le i \le |Q| \end{cases}$$

Therefore:

$$P(S|M) = \sum_{i=0}^{|Q|-1} F(i,|S|) P_t(q_0|q_i)$$