HMM for Bioinformatics

Paweł Błażej
Department of Genomics, Faculty of Biotechnology, blazej@smorfland.uni.wroc.pl

3 kwietnia 2019
(1) Hidden Markov models (HMMs) form the basis for the majority of gene finders in use today;
(1) Hidden Markov models (HMMs) form the basis for the majority of gene finders in use today;
(2) A number of extensions to the HMM formalism exist which have been found invaluable in achieving the accuracy and flexibility required of a practical, state-of-the-art gene finder.

Definition

We introduce the notion of a hidden Markov model as a stochastic machine denoted by a 6-tuple:

$$
M=\left(Q, \alpha, P_{t}, q^{0}, q^{f}, P_{e}\right)
$$

where
(1) state set Q;

Definition

We introduce the notion of a hidden Markov model as a stochastic machine denoted by a 6-tuple:

$$
M=\left(Q, \alpha, P_{t}, q^{0}, q^{f}, P_{e}\right)
$$

where
(1) state set Q;
(2) alphabet α;

Definition

We introduce the notion of a hidden Markov model as a stochastic machine denoted by a 6-tuple:

$$
M=\left(Q, \alpha, P_{t}, q^{0}, q^{f}, P_{e}\right)
$$

where
(1) state set Q;
(2) alphabet α;
(3) transition distribution $P_{t}: Q \times Q \rightarrow \mathbf{R}$;

Definition

We introduce the notion of a hidden Markov model as a stochastic machine denoted by a 6-tuple:

$$
M=\left(Q, \alpha, P_{t}, q^{0}, q^{f}, P_{e}\right)
$$

where
(1) state set Q;
(2) alphabet α;
(3) transition distribution $P_{t}: Q \times Q \rightarrow \mathbf{R}$;
(1) initial state q^{0};

Definition

We introduce the notion of a hidden Markov model as a stochastic machine denoted by a 6-tuple:

$$
M=\left(Q, \alpha, P_{t}, q^{0}, q^{f}, P_{e}\right)
$$

where
(1) state set Q;
(2) alphabet α;
(3) transition distribution $P_{t}: Q \times Q \rightarrow \mathbf{R}$;
(9) initial state q^{0};
(3) final state q^{f};

Definition

We introduce the notion of a hidden Markov model as a stochastic machine denoted by a 6-tuple:

$$
M=\left(Q, \alpha, P_{t}, q^{0}, q^{f}, P_{e}\right)
$$

where
(1) state set Q;
(2) alphabet α;
(3) transition distribution $P_{t}: Q \times Q \rightarrow \mathbf{R}$;
(9) initial state q^{0};
(3) final state q^{f};
(0) emission distribution $P_{e}: Q \times \alpha \rightarrow \mathbf{R}$.

Conventions

(1) We reserve the symbol q for particular states in the model: $Q=\left\{q^{0}, q_{1}, \ldots, q_{m-1}, q^{f}\right\}$, for $m=|Q|$;

Conventions

(1) We reserve the symbol q for particular states in the model:

$$
Q=\left\{q^{0}, q_{1}, \ldots, q_{m-1}, q^{f}\right\}, \text { for } m=|Q| ;
$$

(2) We denote the elements of the list using some generic variable (sequence of hidden states), such as y i.e., $\phi=\left(y_{0}, y_{1}, \ldots, y_{n-1}\right)$ for $n=|\phi|$.

Conventions

(1) We reserve the symbol q for particular states in the model: $Q=\left\{q^{0}, q_{1}, \ldots, q_{m-1}, q^{f}\right\}$, for $m=|Q|$;
(2) We denote the elements of the list using some generic variable (sequence of hidden states), such as y i.e., $\phi=\left(y_{0}, y_{1}, \ldots, y_{n-1}\right)$ for $n=|\phi|$.
(3) For convenience, we will always assume $q^{f}=q^{0}$ that is, the Oth state in Q will always serve the function of initial and final state for the HMM;

Conventions

(1) Thus, we can now denote an HMM more compactly as:

$$
M=\left(Q, \alpha, P_{t}, P_{e}\right)
$$

Conventions

(1) Thus, we can now denote an HMM more compactly as:

$$
M=\left(Q, \alpha, P_{t}, P_{e}\right)
$$

(2) We reserve the letter s for the elements of the alphabet $\alpha=\left\{s_{0}, \ldots, s_{k-1}\right\}$ for $k=|\alpha|$;

Conventions

(1) Thus, we can now denote an HMM more compactly as:

$$
M=\left(Q, \alpha, P_{t}, P_{e}\right)
$$

(2) We reserve the letter s for the elements of the alphabet $\alpha=\left\{s_{0}, \ldots, s_{k-1}\right\}$ for $k=|\alpha|$;
(3) When dealing with an output sequence S we will use a generic variable such as x to denote the individual symbols in the sequence: $S=x_{0}, \ldots, x_{L-1}$, for $L=|S|$.

Simple explanation

(1) a machine M operates by starting in state q^{0};

Simple explanation

(1) a machine M operates by starting in state q^{0};
(2) transitioning stochastically from state to state according to $P_{t}\left(y_{i} \mid y_{i-1}\right)$, for $\left\{y_{i}, y_{i-1}\right\} \subseteq Q$;

Simple explanation

(1) a machine M operates by starting in state q^{0};
(2) transitioning stochastically from state to state according to $P_{t}\left(y_{i} \mid y_{i-1}\right)$, for $\left\{y_{i}, y_{i-1}\right\} \subseteq Q$;
(3) Upon an entering a state q, the machine emits a symbol s according to $P_{e}(s \mid q)$;

Simple explanation

(1) a machine M operates by starting in state q^{0};
(2) transitioning stochastically from state to state according to $P_{t}\left(y_{i} \mid y_{i-1}\right)$, for $\left\{y_{i}, y_{i-1}\right\} \subseteq Q$;
(3) Upon an entering a state q, the machine emits a symbol s according to $P_{e}(s \mid q)$;
(9) terminating in state q^{f}.

Simple example

Let us consider a simple example:

$$
M_{1}=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{Y, R\}, P_{t}, P_{e}\right)
$$

where

$$
\begin{gathered}
P_{t}=\left\{\left(q_{0}, q_{1}, 1\right),\left(q_{1}, q_{1}, 0.8\right),\left(q_{1}, q_{2}, 0.15\right),\left(q_{1}, q_{0}, 0.05\right)\right. \\
\left.\left(q_{2}, q_{2}, 0.7\right),\left(q_{2}, q_{1}, 0.3\right)\right\}
\end{gathered}
$$

and

$$
P_{e}=\left\{\left(q_{1}, Y, 1\right),(q, 1, R, 0),\left(q_{2}, Y, 0\right),\left(q_{2}, R, 1\right)\right\} .
$$

Simple example

A single run of M_{1}, might produce the sequence S :

YRYRY.

An another run of the HMM we might observe S :
YRYYRYRRY.

HMM - example

The probability of $P\left(S \mid M_{1}\right)$

$$
P\left(Y R Y R Y \mid M_{1}\right)=
$$

$a_{0 \rightarrow 1} \times b_{1, Y} \times a_{1 \rightarrow 2} \times b_{2, R} \times a_{2 \rightarrow 1} \times b_{1, Y} \times a_{1 \rightarrow 2} \times b_{2, R} \times a_{2 \rightarrow 1} \times b_{1, Y}$. where $a_{i \rightarrow j}$ denotes $P_{t}\left(q_{j} \mid q_{i}\right)$ whereas $b_{i, s}$ denotes $P_{e}\left(s \mid q_{i}\right)$.

Representing of HMMs

An HMM with states: $Q=\left\{q_{1}, q_{2}, \ldots, q_{n-1}\right\}$ and alphabet $\alpha=\left\{s_{0}, s_{1}, \ldots, s_{m-1}\right\}$ can be represented very simply in software by utilizing two matrices:
(1) for the emissions probabilities, i.e. $n \times m$ matrix $E=\left(E_{i j}\right)$ where $E_{i j}=P_{e}\left(s_{j} \mid q_{i}\right)$;

Representing of HMMs

An HMM with states: $Q=\left\{q_{1}, q_{2}, \ldots, q_{n-1}\right\}$ and alphabet $\alpha=\left\{s_{0}, s_{1}, \ldots, s_{m-1}\right\}$ can be represented very simply in software by utilizing two matrices:
(1) for the emissions probabilities, i.e. $n \times m$ matrix $E=\left(E_{i j}\right)$ where $E_{i j}=P_{e}\left(s_{j} \mid q_{i}\right)$;
(2) for the transitions probabilities, i.e. $n \times n$ matrix $P=\left(P_{i j}\right)$ where $P_{i j}=P_{t}\left(q_{j} \mid q_{i}\right)$.

The three basic problems for HMMs

(1) Given the observation sequence $S=x_{1}, x_{2}, \ldots, x_{k}$ and the model $M=\left(Q, \alpha, q_{0}, P_{t}, P_{e}\right)$ how do we choose a corresponding hidden state sequence $y_{1}, y_{2}, \ldots, y_{k}$ which is optimal in some meaningful sense?

The three basic problems for HMMs

(1) Given the observation sequence $S=x_{1}, x_{2}, \ldots, x_{k}$ and the model $M=\left(Q, \alpha, q_{0}, P_{t}, P_{e}\right)$ how do we choose a corresponding hidden state sequence $y_{1}, y_{2}, \ldots, y_{k}$ which is optimal in some meaningful sense?
(2) Given the observation sequence $S=x_{1}, x_{2}, \ldots, x_{k}$ and the model $M=\left(Q, \alpha, q_{0}, P_{t}, P_{e}\right)$ how do we efficiently compute $P(S \mid M)$, the probability of the observation sequence, given the model?

The three basic problems for HMMs

(1) Given the observation sequence $S=x_{1}, x_{2}, \ldots, x_{k}$ and the model $M=\left(Q, \alpha, q_{0}, P_{t}, P_{e}\right)$ how do we choose a corresponding hidden state sequence $y_{1}, y_{2}, \ldots, y_{k}$ which is optimal in some meaningful sense?
(2) Given the observation sequence $S=x_{1}, x_{2}, \ldots, x_{k}$ and the model $M=\left(Q, \alpha, q_{0}, P_{t}, P_{e}\right)$ how do we efficiently compute $P(S \mid M)$, the probability of the observation sequence, given the model?
(3) How do we adjust the model parameters $M=\left(Q, \alpha, q_{0}, P_{t}, P_{e}\right)$ to maximize $P(S \mid M)$?

Finding the most probable path

Decoding with an HMM can be performed using a dynamic programming procedure called the Viterbi algorithm. Given a model

$$
M=\left(Q, \alpha, P_{t}, P_{e}\right)
$$

with n hidden states and a nonempty sequence of emmited states

$$
S=x_{0} x_{1}, \ldots, x_{L-1},
$$

the algorithm operates by progresively computing to find the most probable path.

Finding path - notations

The most probable path after the step k

$$
\phi_{i, k}=y_{0}, \ldots, y_{k+1}\left(\forall_{0 \leqslant j \leqslant k+1} y_{j} \in Q ; y_{0}=q_{0}, y_{k+1}=q_{i}\right)
$$

ending in state q_{i} at the position k whereby the model M could have generated the subsequence

$$
x_{0}, x_{1}, \ldots, x_{k}
$$

Finding path - notations

Therefore:

$$
\phi_{i, k}= \begin{cases}\operatorname{argmax}_{\phi_{j, k-1}+q_{i}}\left[P\left(\phi_{j, k-1}, x_{0}, \ldots, x_{L-1}\right) \cdot P_{t}\left(q_{i} \mid q_{j}\right) P_{e}\left(x_{k} \mid q_{i}\right)\right] & \text { if } k>0 \\ q_{0} q_{i} & \text { if } k=0\end{cases}
$$

Finding path - notations

Therefore:

$$
\phi_{i, k}= \begin{cases}\operatorname{argmax}_{\phi_{j, k-1}+q_{i}}\left[P\left(\phi_{j, k-1}, x_{0}, \ldots, x_{L-1}\right) \cdot P_{t}\left(q_{i} \mid q_{j}\right) P_{e}\left(x_{k} \mid q_{i}\right)\right] & \text { if } k>0 \\ q_{0} q_{i} & \text { if } k=0 .\end{cases}
$$

where
$P\left(\phi_{j, k}, x_{0}, \ldots, x_{L-1}\right)= \begin{cases}\max _{j}\left[P\left(\phi_{j, k-1}, x_{0}, \ldots, x_{L-1}\right) \cdot P_{t}\left(q_{i} \mid q_{j}\right) P_{e}\left(x_{k} \mid q_{i}\right)\right] & \text { if } k>0 \\ P_{t}\left(q_{i} \mid q_{0}\right) P_{e}\left(x_{0} \mid q_{i}\right) & \text { if } k=0 .\end{cases}$

Finding path - notations

Once we have computed $\phi_{i, k}$ for all states q_{i} and all positions k in the sequence, it is then a simple matter to select the most probable path for the full sequence of S by comparatively enumerating all paths ending at the last symbol x_{L-1}, with the additional consideration that the last act of the machine after emiting x_{L-1} must have been to transition into state q_{0}.

$$
\phi^{\prime}=\operatorname{argmax}_{\phi_{i, L-1}} P\left(\phi_{i, L-1}, S\right) P_{t}\left(q_{0} \mid q_{i}\right)
$$

The Viterbi algorithm - notations

The Viterbi algorithm utilizes the following dynamic programming recurrence to efficiently compute the probabilities $P\left(\phi_{i, k}, S_{0 \ldots k}\right)$ of the prospective paths:

$$
V(i, k)= \begin{cases}\max _{j}\left[V(j, k-1) P_{t}\left(q_{i} \mid q_{j}\right) P_{e}\left(x_{k} \mid q_{i}\right)\right] & \text { if } k>0 \\ P_{t}\left(q_{i} \mid q_{0}\right) P_{e}\left(x_{0} \mid q_{i}\right) & \text { if } k=0 .\end{cases}
$$

The Viterbi algorithm - notations

The Viterbi algorithm utilizes the following dynamic programming recurrence to efficiently compute the probabilities $P\left(\phi_{i, k}, S_{0 \ldots k}\right)$ of the prospective paths:

$$
V(i, k)= \begin{cases}\max _{j}\left[V(j, k-1) P_{t}\left(q_{i} \mid q_{j}\right) P_{e}\left(x_{k} \mid q_{i}\right)\right] & \text { if } k>0 \\ P_{t}\left(q_{i} \mid q_{0}\right) P_{e}\left(x_{0} \mid q_{i}\right) & \text { if } k=0\end{cases}
$$

Clearly, $V(i, k)$ represents the probability $P\left(\phi_{i, k}, S_{0 \ldots k}\right)$ of the most probable path $\phi_{i, k}$ which ends at the state q_{i} and emits the subsequence x_{0}, \ldots, x_{k}.

The Viterbi algorithm - notations

The optimal predecessor link $T(i, k)$

$$
T(i, k)=\left\{\begin{array}{ll}
\operatorname{argmax}
\end{array}\left[V(j, k-1) P_{t}\left(q_{i} \mid q_{j}\right) P_{e}\left(x_{k} \mid q_{i}\right)\right], \text { if } k>0 .\right.
$$

Each element $T(i, k)$ is thus a state index j for the optimal predecessor q_{j} of q_{i} at position k in the sense that the optimal path $\phi_{i, k}$ must have as its last transition $q_{j} \rightarrow q_{i}$.

The Viterbi algorithm

Computing probability of a sequence

(1) A procedure very similar to the Viterbi algorithm can be used to find the probability that a given model M emits (nonempty) sequence S during any given run of the machine i.e. $P(S \mid M)$;

Computing probability of a sequence

(1) A procedure very similar to the Viterbi algorithm can be used to find the probability that a given model M emits (nonempty) sequence S during any given run of the machine i.e. $P(S \mid M)$;
(2) Because M may potentially emit S via any number of paths through the states of the model, to compute the full probability of the sequence we need to sum over all possible paths emiting S.

$$
F(i, k)= \begin{cases}1 & \text { for } k=0, i=0 \\ 0 & \text { for } k>0, i=0 \\ 0 & \text { for } k=0, i>0 \\ \sum_{j=0}^{|Q|-1} F(j, k-1) P_{t}\left(q_{i} \mid q_{j}\right) P_{e}\left(x_{k} \mid q_{i}\right) & \text { for } 1 \leqslant k \leqslant|S|, \\ & 1 \leqslant i \leqslant|Q|\end{cases}
$$

Therefore:

$$
P(S \mid M)=\sum_{i=0}^{|Q|-1} F(i,|S|) P_{t}\left(q_{0} \mid q_{i}\right)
$$

