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1 HMM for bioinformatics

1.1 Definition

we introduce the notion of a hidden Markov model as a stochastic machine denoted by a 6-tuple:

M = (Q, α, Pt, q0, q f , Pe)

where

: 1. state set Q; 2. alphabet α;

3. transition distribution Pt : QQ → R;

4. initial state q0;

5. final state q f ;

6. emission distribution Pe : Qα → R.

It was explained that 1. a machine M operates by starting in state q0;

2. transitioning stochastically from state to state according to Pt(yi|yi1), for {yi, yi1} ⊆ Q;

3. Upon entering a state q, the machine emits a symbol s according to Pe(s|q);
4. terminating in state q f .

There are no transitions into q0 , and none out of q f , and neither state emits any symbols.

1.2 Conventions

:1. We reserve the symbol q for particular states in the model: Q = {q0, . . . , qm1}, for m = |Q|;
:2. We denote the elements of the list using some generic variable (sequence of hidden states),

such as y i.e., ϕ = (y0, y1, . . . , yn1) for n = |ϕ|.
:3. For convenience, we will always assume q f = q0 that is, the 0th state in Q will always serve

the function of initial and final state for the HMM;
:4. Thus, we can now denote an HMM more compactly as:

M = (Q, α, Pt, Pe).

:5. We reserve the letter s for the elements of the alphabet α = {s0, . . . , sk1} for k = |α|.
When dealing with an input sequence S we will use a generic variable such as x to denote the

individual symbols in the sequence: S = x0, . . . , xL1 , for L = |S|. Since any particular symbol s
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i may occur in a sequence S zero or more times, we may have xi = xj for i ̸= j, whereas si = sj
will always imply that i = j, since si is taken to be the unique name for the ith symbol in α. Thus,
for si we take i to be an index into the alphabet α, whereas for xj we take j to be an index into a
sequence.

1.3 Representing HMMs

An HMM can be represented very simply in software by utilizing two matrices, one for the emis-
sion probabilities E and one for the transition probabilities P.

For a state set Q = {q0, q1, . . . , qn1} and alphabet α = {s0, s1, . . . , sm1}, we can utilize an n × m
emission matrix, E by establishing Eij = Pe(sj|qi)

Similarly, we can designate an n × n transition matrix, P, such that Pij = Pt(qj|qi).

1.4 Simple Example

Let us consider a simple example:

M1 = ({q0, q1, q2}, {Y, R}, Pt, Pe)

where

Pt = {(q0, q1, 1), (q1, q1, 0.8), (q1, q2, 0.15), (q1, q0, 0.05), (q2, q2, 0.7), (q2, q1, 0.3)}

and

Pe = {(q1, Y, 1), (q1, R, 0), (q2, Y, 0), (q2, R, 1)}.

1.4.1 representation M1

In [2]: P=matrix(c(0,1,0,0.05,0.8,0.15,0,0.3,0.7), nrow=3,byrow=TRUE)
P

0.00 1.0 0.00
0.05 0.8 0.15
0.00 0.3 0.70

In [3]: E=matrix(c(1,0,0,1), nrow=2, byrow=TRUE)
E

1 0
0 1

In [4]: source("hmm.R")
H=c("q_0","q_1","q_2")
O=c("Y","R")

In [6]: library("igraph")
result <- graph_from_adjacency_matrix(P,mode="directed",weighted = TRUE)
plot.igraph(result,vertex.label=H)
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In [25]: sequence=HMM(P,E)
sequence$hidden
H[sequence$hidden+1]
sequence$observed
O[sequence$observed]

1. 0 2. 1 3. 1 4. 1 5. 1 6. 2 7. 1 8. 1 9. 2 10. 1 11. 1 12. 1 13. 0
1. ’q_0’ 2. ’q_1’ 3. ’q_1’ 4. ’q_1’ 5. ’q_1’ 6. ’q_2’ 7. ’q_1’ 8. ’q_1’ 9. ’q_2’ 10. ’q_1’ 11. ’q_1’ 12. ’q_1’

13. ’q_0’
1. 1 2. 1 3. 1 4. 1 5. 2 6. 1 7. 1 8. 2 9. 1 10. 1 11. 1
1. ’Y’ 2. ’Y’ 3. ’Y’ 4. ’Y’ 5. ’R’ 6. ’Y’ 7. ’Y’ 8. ’R’ 9. ’Y’ 10. ’Y’ 11. ’Y’
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1.5 Your own HMM

1.5.1 Transitions

In [56]: nHidden_=5
P=matrix(sample(1:1000,25,replace=TRUE), nrow=nHidden_,byrow=TRUE)
P[1,]=c(0,1,0,0,0)
P[,1]=c(0,0,0,0,500)
temp_=rowSums(P)
#diag(1/temp_)
P=diag(1/temp_)%*%P
P

0.0000000 1.0000000 0.000000000 0.0000000 0.00000000
0.0000000 0.4040346 0.227089337 0.3383285 0.03054755
0.0000000 0.1017075 0.002227171 0.5820341 0.31403118
0.0000000 0.1372041 0.171597633 0.3313609 0.35983728
0.1684069 0.1748063 0.304816437 0.2000674 0.15190300

1.5.2 Emissions

In [63]: nObserved_=4
E=matrix(sample(1:nObserved_^2,nObserved_^2,replace=TRUE), nrow=nObserved_, byrow=TRUE)
temp_=rowSums(E)
E=diag(1/temp_)%*%E
E

0.2647059 0.4411765 0.2058824 0.08823529
0.1200000 0.4400000 0.0800000 0.36000000
0.1875000 0.2500000 0.2500000 0.31250000
0.3478261 0.1521739 0.2826087 0.21739130

1.5.3 The graphical representation

In [72]: library("igraph")
H=paste(rep("q",nHidden_),0:(nHidden_-1))
H

result <- graph_from_adjacency_matrix(P,mode="directed",weighted = TRUE)
plot.igraph(result,vertex.label=H)

1. ’q 0’ 2. ’q 1’ 3. ’q 2’ 4. ’q 3’ 5. ’q 4’
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1.5.4 HMM sequence

In [79]: sequence=HMM(P,E)
O=letters[1:nHidden_]
sequence$hidden
H[sequence$hidden+1]
sequence$observed
O[sequence$observed]

1. 0 2. 1 3. 1 4. 3 5. 1 6. 1 7. 1 8. 3 9. 4 10. 1 11. 1 12. 1 13. 1 14. 2 15. 3 16. 3 17. 4 18. 4 19. 3 20. 4
21. 1 22. 2 23. 3 24. 1 25. 2 26. 3 27. 3 28. 4 29. 1 30. 1 31. 3 32. 4 33. 0

1. ’q 0’ 2. ’q 1’ 3. ’q 1’ 4. ’q 3’ 5. ’q 1’ 6. ’q 1’ 7. ’q 1’ 8. ’q 3’ 9. ’q 4’ 10. ’q 1’ 11. ’q 1’ 12. ’q 1’ 13. ’q
1’ 14. ’q 2’ 15. ’q 3’ 16. ’q 3’ 17. ’q 4’ 18. ’q 4’ 19. ’q 3’ 20. ’q 4’ 21. ’q 1’ 22. ’q 2’ 23. ’q 3’ 24. ’q 1’ 25. ’q
2’ 26. ’q 3’ 27. ’q 3’ 28. ’q 4’ 29. ’q 1’ 30. ’q 1’ 31. ’q 3’ 32. ’q 4’ 33. ’q 0’
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1. 4 2. 3 3. 3 4. 3 5. 1 6. 2 7. 2 8. 4 9. 2 10. 3 11. 1 12. 1 13. 4 14. 4 15. 4 16. 4 17. 4 18. 4 19. 4 20. 1
21. 2 22. 3 23. 3 24. 1 25. 4 26. 4 27. 4 28. 1 29. 3 30. 2 31. 1

1. ’d’ 2. ’c’ 3. ’c’ 4. ’c’ 5. ’a’ 6. ’b’ 7. ’b’ 8. ’d’ 9. ’b’ 10. ’c’ 11. ’a’ 12. ’a’ 13. ’d’ 14. ’d’ 15. ’d’ 16. ’d’
17. ’d’ 18. ’d’ 19. ’d’ 20. ’a’ 21. ’b’ 22. ’c’ 23. ’c’ 24. ’a’ 25. ’d’ 26. ’d’ 27. ’d’ 28. ’a’ 29. ’c’ 30. ’b’ 31. ’a’

2 The three basic problems for HMMs

: 1. Given the observation sequence S = x1, x2, . . . , xk and the model M = (Q, α, q0, Pt, Pe) how do
we efficiently compute P(S|M), the probability of the observation sequence, given the model?

: 2. Given the observation sequence S = x1, x2, . . . , xk and the model M = (Q, α, q0, Pt, Pe)
how do we choose a corresponding hidden state sequence y1, y2, . . . , yk which is optimal in some
meaningful sense?

: 3. How do we adjust the model parameters M = (Q, α, q0, Pt, Pe) to maximize P(S|M)?

2.1 The probability of P(S|M1)

Because each nonsilent state in this HMM can emit only one of the two symbols in the alphabet, we
can compute the probability that any given run of M1 results in a given sequence by multiplying
together the transition and emission probabilities. We have

P(YRYRY|M1) = a0→1 × b1,Y × a1→2 × b2,R × a2→1 × b1,Y × a1→2 × b2,R × a2→1 × b1,Y

where ai→j denotes Pt(qj|qi) whereas bi,s denotes Pe(s|qi).

In [7]: P=matrix(c(0,1,0,0.05,0.8,0.15,0,0.3,0.7), nrow=3,byrow=TRUE)
P

0.00 1.0 0.00
0.05 0.8 0.15
0.00 0.3 0.70

In [8]: E=matrix(c(1,0,0,1), nrow=2, byrow=TRUE)
E

1 0
0 1

In [9]: sequence=HMM(P,E)
sequence$hidden
H[sequence$hidden+1]
sequence$observed
O[sequence$observed]

1. 0 2. 1 3. 2 4. 1 5. 1 6. 1 7. 1 8. 1 9. 2 10. 2 11. 2 12. 2 13. 2 14. 2 15. 2 16. 1 17. 1 18. 1 19. 1 20. 1
21. 1 22. 1 23. 0

1. ’q_0’ 2. ’q_1’ 3. ’q_2’ 4. ’q_1’ 5. ’q_1’ 6. ’q_1’ 7. ’q_1’ 8. ’q_1’ 9. ’q_2’ 10. ’q_2’ 11. ’q_2’ 12. ’q_2’
13. ’q_2’ 14. ’q_2’ 15. ’q_2’ 16. ’q_1’ 17. ’q_1’ 18. ’q_1’ 19. ’q_1’ 20. ’q_1’ 21. ’q_1’ 22. ’q_1’ 23. ’q_0’

1. 1 2. 2 3. 1 4. 1 5. 1 6. 1 7. 1 8. 2 9. 2 10. 2 11. 2 12. 2 13. 2 14. 2 15. 1 16. 1 17. 1 18. 1 19. 1 20. 1
21. 1

1. ’Y’ 2. ’R’ 3. ’Y’ 4. ’Y’ 5. ’Y’ 6. ’Y’ 7. ’Y’ 8. ’R’ 9. ’R’ 10. ’R’ 11. ’R’ 12. ’R’ 13. ’R’ 14. ’R’ 15. ’Y’
16. ’Y’ 17. ’Y’ 18. ’Y’ 19. ’Y’ 20. ’Y’ 21. ’Y’
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In [10]: sequence$observed
Forward(P,E,sequence$observed)

1. 1 2. 2 3. 1 4. 1 5. 1 6. 1 7. 1 8. 2 9. 2 10. 2 11. 2 12. 2 13. 2 14. 2 15. 1 16. 1 17. 1 18. 1 19. 1 20. 1
21. 1

1.27903709999923e-06

In [31]: (0.8^3)*0.15*0.3*0.8*0.15*0.3*0.8*0.8*0.05

2.654208e-05
Where is the problem?

2.1.1 The Forward Algorithm

: 1. A procedure very similar to the Viterbi algorithm can be used to find the probability that a given model M emits (nonempty) sequence S during any given run of the machine i.e. P(S|M);
2. Because M may potentially emit S via any number of paths through the states of the
model, to compute the full probability of the sequence we need to sum over all possible
paths emiting S.

F(i, k) =



1 f or k = 0, i = 0
0 f or k > 0, i = 0
0 f or k = 0, i > 0

∑|Q|−1
j=0 F(j, k − 1)Pt(qi|qj)Pe(xk|qi) f or 1 ≤ k ≤ |S|,

1 ≤ i ≤ |Q|
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