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1 HMM for bioinformatics

1.1 Definition

we introduce the notion of a hidden Markov model as a stochastic machine denoted by a 6-tuple:

M = (Q,IX,PtMJO/Qf/Pe)

where

: 1. state set Q; 2. alphabet «;
3. transition distribution P; : QQ — R;
4. initial state qo;
5. final state q¢;

6. emission distribution P, : Qu — R.

It was explained that 1. a machine M operates by starting in state go;
2. transitioning stochastically from state to state according to P;(y;|yi1), for {yi, ya} C Q;
3. Upon entering a state ¢, the machine emits a symbol s according to P.(s|q);

4. terminating in state gy.

There are no transitions into qo , and none out of 45 , and neither state emits any symbols.

1.2 Conventions

:1. We reserve the symbol g for particular states in the model: Q = {qo, ..., qm1}, for m = |Q};

:2. We denote the elements of the list using some generic variable (sequence of hidden states),
suchasyie, ¢ = (Yo, y1,-..,Yn1) forn = |¢|.

:3. For convenience, we will always assume q¢ = qo that is, the Oth state in Q will always serve
the function of initial and final state for the HMM;

:4. Thus, we can now denote an HMM more compactly as:

M= <Q/a/Pt/P€>-

:5. We reserve the letter s for the elements of the alphabet &« = {5y, ..., s} for k = |a.
When dealing with an input sequence S we will use a generic variable such as x to denote the
individual symbols in the sequence: S = xo,...,x11, for L = |S|. Since any particular symbol s
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i may occur in a sequence S zero or more times, we may have x; = x; for i # j, whereas s; = s;
will always imply that i = j, since s; is taken to be the unique name for the ith symbol in «. Thus,
for s; we take i to be an index into the alphabet «, whereas for x; we take j to be an index into a
sequence.

1.3 Representing HMMs

An HMM can be represented very simply in software by utilizing two matrices, one for the emis-
sion probabilities E and one for the transition probabilities P.

For a state set Q = {qo, 41, ..., qn1} and alphabet « = {so,s1,...,5,1}, we can utilize an n x m
emission matrix, E by establishing E;; = P.(s;|q;)

Similarly, we can designate an n x n transition matrix, P, such that P;; = P;(q;|q;).

1.4 Simple Example

Let us consider a simple example:

Ml = ({EIOI 5]11 5]2}/ {Y/R}/ Pt, PE)

where

Pt = {(1]0/ q1i, 1)/ (qli q1, 08)1 (fh/ q2, 015)/ (111/ qo, 005)1 (qZI q2, 07)/ (QZ; qi, 03)}

and
Pe = {(qlr Y/ 1)/ (q1/ Rr 0)/ (qZ/ Y/ O)/ (q2/ R/ 1)}'

1.4.1 representation M,

In [2]: P=matrix(c(0,1,0,0.05,0.8,0.15,0,0.3,0.7), nrow=3,byrow=TRUE)

P
0.00 1.0 0.00
005 08 0.15
0.00 03 0.70

In [3]: E=matrix(c(1,0,0,1), nrow=2, byrow=TRUE)
E
1 0
0 1
In [4]: source("hmm.R")

H=C("q_0" s ||q_1u s nq_2u)
O:C("Y" s "R.")

In [6]: library("igraph")
result <- graph_from_adjacency_matrix(P,mode="directed",weighted = TRUE)
plot.igraph(result,vertex.label=H)



In [25]: sequence=HMM(P,E)
sequence$hidden
H[sequence$hidden+1]
sequence$observed
0[sequence$observed]

1.02.13.14.15.16.27.18.19.210.111.112.113.0

1.’9.0"2.’q_1"3.’q_1"4.’q_1"5."q_1"6.’q_2"7.’q_1"8.’q_1"9.’q_2"10.'q_1"11.’q_1"12. 'q_1"
13.7q_0’

1.12.13.14.15.26.17.18.29.110.111.1

1.7Y'2.°Y"3.°Y"4.7Y'5.’R"6."Y’ 7."Y’8.'R"9. 'Y 10. 'Y’ 11. 'Y’



1.5 Your own HMM
1.5.1 Transitions

In [56]: nHidden =5

P=matrix(sample(1:1000,25,replace=TRUE), nrow=nHidden_,byrow=TRUE)
P[1,]=c(0,1,0,0,0)

P[,1]=¢c(0,0,0,0,500)

temp_=rowSums (P)

#diag(1/temp_)

P=diag(1/temp_)%*’P

P

0.0000000
0.0000000
0.0000000
0.0000000
0.1684069

1.0000000
0.4040346
0.1017075
0.1372041
0.1748063

0.000000000
0.227089337
0.002227171
0.171597633
0.304816437

0.0000000
0.3383285
0.5820341
0.3313609
0.2000674

0.00000000
0.03054755
0.31403118
0.35983728
0.15190300

1.5.2 Emissions

In [72]:

1.5.3 The graphical representation

library("igraph")

In [63]: nObserved_=4

E=matrix(sample(l:nObserved_"2,n0bserved_"2,replace=TRUE), nrow=nObserved_, byrow=TRU!
temp_=rowSums (E)
E=diag(1/temp_)’%*%E
E

0.2647059 0.4411765 0.2058824 0.08823529

0.1200000 0.4400000 0.0800000 0.36000000

0.1875000 0.2500000 0.2500000 0.31250000

0.3478261 0.1521739 0.2826087 0.21739130

H=paste(rep("q",nHidden_),0: (nHidden_-1))

H

result <- graph_from_adjacency_matrix(P,mode="directed",weighted = TRUE)

plot.igraph(result,vertex.label=H)

1.'q0"2.’q1"3.’q2"4.’q3'5.q¥4



1.54 HMM sequence

In [79]: sequence=HMM(P,E)
O=letters[1:nHidden_]
sequence$hidden
H[sequence$hidden+1]
sequence$observed
0[sequence$observed]

1.02.13.14.35.16.17.18.39.410.111.112.113.114.215.316.317.418.419.320.4
21.122.223.324.125.226.327.328.429.130.131.332.433.0

1.'q0"2.’q1"3.’q1"4.’q3’5."q1"6."q1"7.’q1"8.’q3"9.’q4'10.'q1"11.'q 1" 12.’q 1" 13.’q
1"14.7q2"15.’q3"16.’q3"17.’q4' 18.’q4'19.'q 3" 20.'q4'21.'q1"22.’q2"23.’q 3" 24.’q 1" 25.’q
2726.’q3"27.7q3"28.’q4"29.’q1"30.’q1"31.’q 3" 32.’q 4" 33.'q 0’
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1.42.33.34.35.16.27.28.49.210.311.112.113.414.415.416.417.418.419.420.1
21.222.323.324.125.426.427.428.129.330.231.1

1.’d"2.7¢"3.’¢’4.’¢’5.7a”6.'b" 7. ’b" 8.’d” 9. 'b" 10. '¢’ 11. "a” 12. "a” 13. ’d” 14. 'd” 15. ’d" 16. ’d’
17.7d”18.7d” 19.’d” 20.’a” 21. 'b” 22. ¢’ 23.’c’ 24.’a’ 25.’d” 26.’d” 27.’d’ 28.’a” 29. "¢’ 30. 'b’ 31. "a’

2 The three basic problems for HMMs

: 1. Given the observation sequence S = x1, x, ..., xx and the model M = (Q,,q0, P, P.) how do
we efficiently compute P(S|M), the probability of the observation sequence, given the model?

: 2. Given the observation sequence S = x1,xy,...,xx and the model M = (Q,«,qo, P;, P.)
how do we choose a corresponding hidden state sequence y1, 1>, . . ., yx which is optimal in some
meaningful sense?

: 3. How do we adjust the model parameters M = (Q, «, qo, P}, P.) to maximize P(S|M)?

2.1 The probability of P(S|M;)

Because each nonsilent state in this HMM can emit only one of the two symbols in the alphabet, we
can compute the probability that any given run of M; results in a given sequence by multiplying
together the transition and emission probabilities. We have

P(YRYRY|Mi) = ag—1 X b1y X @10 X by r X Ap—1 X b1y X @152 X byr X ar1 X byy
where a;_,; denotes P;(q;|q;) whereas b; ; denotes P.(s|q;).

In [7]: P=matrix(c(0,1,0,0.05,0.8,0.15,0,0.3,0.7), nrow=3,byrow=TRUE)
P

0.00 1.0 0.00
0.05 0.8 0.15
0.00 03 0.70

In [8]: E=matrix(c(1,0,0,1), nrow=2, byrow=TRUE)
E
1 0
0 1
In [9]: sequence=HMM(P,E)
sequence$hidden
H[sequence$hidden+1]
sequence$observed
0[sequence$observed]

1.02.13.24.15.16.17.18.19.210.211.212.213.214.215.216.117.118.119.120. 1
21.122.123.0

1.’9.0'2."q_13.7q.2'4."q_1"5.’q_1"6.’q_1"7."q_1"8.7q_1"9.’q_2"10.’q_2" 11.’q 2" 12.’q_2’
13.7q.2 14.q 2" 15.’q_2" 16.’q_1" 17.’q_1" 18.’q_1" 19."q_1" 20.’q_1" 21.’q_1" 22.’q_1" 23.’q_0’

1.12.23.14.15.16.17.18.29.210.211.212.213.214.215.116.117.118.119.120. 1
21.1

1.7Y'2.'R'3.7Y’ 4."Y’5.”Y' 6.Y’ 7."Y’ 8. 'R’ 9. "R’ 10. 'R’ 11. 'R’ 12. 'R’ 13. 'R’ 14. 'R’ 15. 'Y’
16.7Y’17.7Y’ 18.7Y’ 19. Y’ 20."Y’ 21."Y’



In [10]: sequence$observed
Forward(P,E,sequence$observed)

1.12.23.14.15.16.17.18.29.210.211.212.213.214.215.116.117.118.119.120.1
21.1
1.27903709999923e-06

In [31]: (0.873)*0.15%0.3%0.8%0.15%0.3*0.8%0.8%0.05

2.654208e-05
Where is the problem?

2.1.1 The Forward Algorithm

: 1. A procedure very similar to the Viterbi algorithm can be used to find the probability that a given model A
2. Because M may potentially emit S via any number of paths through the states of the
model, to compute the full probability of the sequence we need to sum over all possible

paths emiting S.
1 fork=0,i=0
0 fork>0,i=0
F(i,k)=<0 fork=0,i>0
Y2 (i, k= D) P(qilq) Pe(xelgr)  for1 <k <|s],
1<i<|Q]
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